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Abstract of the Dissertation
Representation Learning-based Approaches for Modeling Data in Multiple Modalities
by
Yingtao Tian

Doctor of Philosophy

in
Computer Science
Stony Brook University

2019

Computationally modeling the real world starts with modeling the data,
which exists in a variety of modalities. Modeling these data enables lever-
aging rich real-world information for agents to behave more naturally in
interaction with humans. However, challenging questions remain on (a) how
best to model data from different modalities and (b) how to model them
in a unified way for downstream tasks to leverage. The recent successes of
representation learning that associates data with continuous vector repre-
sentations pave directions for a unified way to model data. In this thesis,
we address this challenge by studying the approaches in modeling data of
multiple modalities using representation learning.

Data from multiple modalities are characterized by structures that call
for a variety of techniques. I present a generative model for structured data
that captures the representations of discrete structures with formal grammars
and semantics, and fast and effective label inference for networks on graphs
with multi-labels edges. Another aspect of my work enables generating high-
quality facial images of anime characters, a project that has proven popular
through the availability of a web interface that runs on edge devices.

Furthermore, I move forward with challenges concerning dealing simul-
taneously with data from more than one modality. 1 describe my work
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modeling bilingual dictionaries, which contains a graph of cross-lingual cor-
respondence between sentences, lexicons, and texts of descriptions to benefit
cross-lingual applications such as semantic search and question answering.
Finally, I present a novel approach to bridge modularities, by learning a
post-hoc interface between two existing models to solve a new task, and fa-
cilitate transferring across different modalities and even different types of
generative models.
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1 Introduction

Computationally modeling the real world starts with modeling the data that
is observed from it. Data exists in a variety of modalities such as image like
a photo of real-world objects, natural languages like online conversations, a
formal language like line notation for chemical molecules, or complex rela-
tions such as ones in a knowledge base. By modeling these data, we open
the door to leveraging rich real-world information for agents to behave more
naturally in interaction with humans. However, it remains challenging to (a)
how to modeling data from different modality and (b) how to model them in
a unified way for downstream tasks to leverage.

The recent successes of representation learning that associates data with
continuous vector representations pave direction for a unified way to model
data. In this thesis, we address the challenge by studying the approaches in
modeling data of multiple modalities using representation learning.

1.1 Two Whys

The combination of data in a variety of modalities and representation learning
naturally leads to two questions for us to answer:

Why caring about data in a variety of modalities? Many data and
application that are of interests of scientists and engineers are of different va-
rieties with their own structures. One example could be modeling molecules
with structured graphs where atoms are nodes and bonds are edges, which
enables many tasks, such as modeling and drug search, with influential scien-
tifically and industry application. Another example is computer programs,
which presents important tasks such as code analysis, verification and se-
curity check. Failing to deal with them properly can leads to hundreds of
millions of losses?.

Why looking for representation learning for benefit? Representa-
tion, or sometimes called latent space, gives a representation, or a latent
vector, z to data x, as shown in Figure 1.1.

1One good example is Ariane 5 rocket loss (https://hownot2code.com/2016/09/02/a-
space-error-370-million-for-an-integer-overflow/).
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Figure 1.1: General diagram of representation learning.

The general philosophy behind my research that guides me to focus on
representation learning is best represented by the following quotation from
Bengio [14]: “a good representation ...captures the posterior distribution
of the underlying explanatory factors for the observed input ...and also is
useful as input to a supervised predictor. ”

One famous example is word embedding which assigns a vector for each
word in a natural language. It not only enables arithmetics in latent space
such as “man - king + queen = woman”, but can be used as features fed into
downstream natural language processing tasks. Another benefit exists when
we operate on latent space rather than data space when optimizing in data
space is hard such as that for molecules case, searching for new molecules
involves discrete searching consisting of many steps of adding, removing or
substituting chemical functional groups. We could instead go to the represen-
tation, or the continuous latent space, and leverage continuous optimization
such as Bayesian optimization here.

1.2 Thesis Overview

This thesis is organized as follows detailing my works on representation learn-
ing for different modalities of data under different circumstances. Data of
multiple modalities are characterized by their respective structures that call
for a variety of technique to deal with. One kind of data is structured
ones, for which In Chapter 2, I present a generative model that captures
the representations for discrete structures with formal grammars and se-



mantics and generate both syntactically and semantically correct data. The
other kind of data could be continuous, for which in Chapter 3, I propose
a fast and effective label inference for social relations in collaboration net-
works which can be formalized as a multi-label classification problem on
graph edges. The following Chapter 4 details my work on generating high-
quality facial images of anime characters using generative adversarial network
that are highly welcome by the community through the availability of web
interface that runs on edge devices. Furthermore, I move forward with
challenges concerning dealing simultaneously with data of more than one
modality. Chapter 5 containing my work modeling bilingual dictionaries,
or cross-lingual correspondence between sentences and lexicons, to benefit
cross-lingual applications such as cross-lingual semantic search and question
answering. In the end, I present in Chapter 6 a novel approach to bridging
modularities by learning a post-hoc interface between two existing models to
solve a new task and facilitate transferring across different modalities (e.g.,
image-to-audio) and even different types of generative models. These works
are covered in short as follows:

Syntax-Directed Variational Autoencoder for Structured Data [61]
Deep generative models have been enjoying success in modeling continuous
data. However, it remains challenging to capture the representations for
discrete structures with formal grammars and semantics, e.g., computer pro-
grams and molecular structures. How to generate both syntactically and
semantically correct data still remains largely an open problem.

Inspired by the theory of compiler where syntax and semantics check
is done via syntax-directed translation (SDT'), we propose a novel syntax-
directed variational autoencoder (SD-VAE) by introducing stochastic lazy
attributes. This approach converts the offline SDT check into on-the-fly
generated guidance for constraining the decoder. Comparing to the state-
of-the-art methods, our approach enforces constraints on the output space
so that the output will be not only syntactically valid but also semantically
reasonable.

We evaluate the proposed model with a few applications in programming
language and molecules, including reconstruction and program / molecule
optimization. The results demonstrate the effectiveness in incorporating
syntactic and semantic constraints in discrete generative models, which is
significantly better than current state-of-the-art approaches.



Social Relation Inference via Label Propagation [146] Collabora-
tion networks are a ubiquitous way to characterize the interactions between
people. In this paper, we consider the problem of inferring social relations in
collaboration networks, such as the fields that researchers collaborate in, or
the categories of projects that Github users work on together.

Social relation inference can be formalized as a multi-label classification
problem on graph edges, but many popular algorithms for semi-supervised
learning on graphs only operate on the nodes of a graph. To bridge this
gap, we propose a principled method which leverages the natural homophily
present in collaboration networks. First, observing that the fields of collab-
oration for two people are usually at the intersection of their interests, we
transform an edge labeling into node labels. Second, we use a label prop-
agation algorithm to propagate node labels in the entire graph. Once the
label distribution for all nodes has been obtained, we can easily infer the
label distribution for all edges. Experiments on three large-scale collabora-
tion networks demonstrate that our method outperforms the state-of-the-art
methods for social relation inference by a large margin, in addition to running
several orders of magnitude faster.

Towards the Automatic Anime Characters Creation with Genera-
tive Adversarial Networks [75] Automatic generation of facial images
has been well studied after the Generative Adversarial Network(GAN) came
out. There exist some attempts applying the GAN model to the problem of
generating facial images of anime characters, but none of the existing work
gives a promising result.

In this work, we explore the training of GAN models specialized on an
anime facial image dataset. We address the issue from both the data and the
model aspect, by collecting a more clean, well-suited dataset and leverage
proper, empirical application of GAN. With quantitative analysis and case
studies, we demonstrate that our efforts lead to a stable and high-quality
model.

Moreover, to assist people with anime character design, we build a website
with our pre-trained model available online, which makes the model easily
accessible to the general public.

Learning to Represent Bilingual Dictionaries [115] Bilingual word
embeddings have been widely used to capture the similarity of lexical se-



mantics in different human languages. However, many applications, such as
cross-lingual semantic search and question answering, can be largely bene-
fited from the cross-lingual correspondence between sentences and lexicons.
To bridge this gap, we propose a neural embedding model that lever-
ages bilingual dictionaries. The proposed model is trained to map the literal
word definitions to the cross-lingual target words, for which we explore with
different sentence encoding techniques. To enhance the learning process on
limited resources, our model adopts several critical learning strategies, includ-
ing multi-task learning on different bridges of languages, and joint learning
of the dictionary model with a bilingual word embedding model.
Experimental evaluation focuses on two applications. The results of
the cross-lingual reverse dictionary retrieval task show our model’s promis-
ing ability of comprehending bilingual concepts based on descriptions, and
highlight the effectiveness of proposed learning strategies in improving perfor-
mance. Meanwhile, our model effectively addresses the bilingual paraphrase
identification problem and significantly outperforms previous approaches.

Latent Translation: Crossing Modalities by Bridging Generative
Models [147] End-to-end optimization has achieved state-of-the-art per-
formance on many specific problems, but there is no straight-forward way to
combine pretrained models for new problems.

Here, we explore improving modularity by learning a post-hoc interface
between two existing models to solve a new task. Specifically, we take inspi-
ration from neural machine translation, and cast the challenging problem of
cross-modal domain transfer as unsupervised translation between the latent
spaces of pretrained deep generative models. By abstracting away the data
representation, we demonstrate that it is possible to transfer across different
modalities (e.g., image-to-audio) and even different types of generative mod-
els (e.g., VAE-to-GAN). We compare to state-of-the-art techniques and find
that a straight-forward variational autoencoder is able to best bridge the two
generative models through learning a shared latent space.

We can further impose supervised alignment of attributes in both domains
with a classifier in the shared latent space. Through qualitative and quanti-
tative evaluations, we demonstrate that locality and semantic alignment are
preserved through the transfer process, as indicated by high transfer accura-
cies and smooth interpolations within a class. Finally, we show this modular
structure speeds up the training of new interface models by several orders



of magnitude by decoupling it from expensive retraining of base generative
models.

1.3 Extra Works

I have been fortunate to work on a broad spectrum of the works besides ones
included in this thesis. Here I give a brief overview of them:

In the direction of modeling knowledge base using representation learn-
ing, I have contributed to several projects, including learning representation
for multilingual knowledge base(or KB) that helps people in constructing a
coherent knowledge base and assist machines in dealing with different expres-
sions of entity relationships [30], devising representation learning mechanism
for relation prediction in KB that tackles transitivity, symmetry and hier-
archical relations that are common in semantic web community [29], and
multilingual KB with views of relation and description using co-training and
leverages a weakly aligned multilingual KG for semi-supervised cross-lingual
learning using entity descriptions [28].

My work in natural language processing leads to a novel approach in
general-purpose natural language interface for databases that bridges both
complexity and expressiveness of natural languages and powerful database
management systems can optimize and answer queries against any relational
database [157]. Another work in this direction presents domain-independent
models to date documents based only on neologism usage patterns, provides
insights into the temporal locality of word usage and generalize to various
domains [84].

I also applied my understanding of sequence modeling in deep learning to
natural science, especially in Genome detection archive improved the perfor-
mance by incorporating intermediate objectives and downstream algorithms
to achieve better accuracy [5].



2 Syntax-Directed Variational Autoencoder
for Structured Data ?

2.1 Introduction

Recent advances in deep representation learning have resulted in power-
ful probabilistic generative models which have demonstrated their ability
on modeling continuous data, e.g., time series signals [151, 38] and im-
ages [122, 77]. Despite the success in these domains, it is still challenging
to correctly generate discrete structured data, such as graphs, molecules and
computer programs. Since many of the structures have syntax and semantic
formalisms, the generative models without explicit constraints often produces
invalid ones.

Conceptually an approach in generative model for structured data can be
divided in two parts, one being the formalization of the structure generation
and the other one being a (usually deep) generative model producing param-
eters for stochastic process in that formalization. Often the hope is that with
the help of training samples and capacity of deep models, the loss function
will prefer the valid patterns and encourage the mass of the distribution of
the generative model towards the desired region automatically.

Arguably the simplest structured data are sequences, whose generation
with deep model has been well studied under the seq2seq [139] framework
that models the generation of sequence as a series of token choices param-
eterized by recurrent neural networks (RNNs). Its widespread success has
encourage several pioneer works that consider the conversion of more complex
structure data into sequences and apply sequence models to the represented
sequences. [54] (CVAE) is a representative work of such paradigm for the
chemical molecule generation, using the SMILES line notation [159] for rep-
resenting molecules. However, because of the lack of formalization of syntax
and semantics serving as the restriction of the particular structured data,
underfitted general-purpose string generative models will often lead to in-
valid outputs. Therefore, to obtain a reasonable model via such training
procedure, we need to prepare large amount of valid combinations of the

2The content of this section is taken from:
[61] Hanjun Dai* and Yingtao Tian* , Bo Dai, Steven Skiena, and Le Song. Syntax-directed
variational autoencoder for structured data. In International Conference on Learning
Representations, 2018



structures, which is time consuming or even not practical in domains like
drug discovery.

To tackle such a challenge, one approach is to incorporate the struc-
ture restrictions explicitly into the generative model. For the considerations
of computational cost and model generality, context-free grammars (CFQG)
have been taken into account in the decoder parametrization. For instance,
in molecule generation tasks, [85] proposes a grammar variational autoen-
coder (GVAE) in which the CFG of SMILES notation is incorporated into
the decoder. The model generates the parse trees directly in a top-down di-
rection, by repeatedly expanding any nonterminal with its production rules.
Although the CFG provides a mechanism for generating syntactic valid ob-
jects, it is still incapable to regularize the model for generating semantic
valid objects [85]. For example, in molecule generation, the semantic of the
SMILES languages requires that the rings generated must be closed; in pro-
gram generation, the referenced variable should be defined in advance and
each variable can only be defined exactly once in each local context (illus-
trated in Fig 2.1b). All the examples require cross-serial like dependencies
which are not enforceable by CFG, implying that more constraints beyond
CFG are needed to achieve semantic valid production in VAE.

In the theory of compiler, attribute grammars, or syntax-directed defi-
nition has been proposed for attaching semantics to a parse tree generated
by context-free grammar. Thus one straightforward but not practical appli-
cation of attribute grammars is, after generating a syntactic valid molecule
candidate, to conduct offline semantic checking. This process needs to be
repeated until a semantically valid one is discovered, which is at best com-
putationally inefficient and at worst infeasible, due to extremely low rate of
passing checking. As a remedy, we propose the syntaz-direct variational au-
toencoder (SD-VAE), in which a semantic restriction component is advanced
to the stage of syntax tree generator. This allows the generator with both
syntactic and semantic validation. The proposed syntax-direct generative
mechanism in the decoder further constraints the output space to ensure
the semantic correctness in the tree generation process. The relationships
between our proposed model and previous models can be characterized in
Figure 2.1a.

Our method brings theory of formal language into stochastic generative
model. The contribution of our paper can be summarized as follows:

o Syntaxr and semantics enforcement: We propose a new formalization of
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Figure 2.1: Illustration on left shows the hierarchy of the structured data
decoding space w.r.t different works and theoretical classification of corre-
sponding strings from formal language theory. SD-VAE, our proposed model
with attribute grammar reshapes the output space tighter to the meaningful
target space than existing works. On the right we show a case where CFG
is unable to capture the semantic constraints, since it successfully parses an
invalid program.

semantics that systematically converts the offline semantic check into
online guidance for stochastic generation using the proposed stochas-
tic lazy attribute. This allows us effectively address both syntax and
semantic constraints.

e Ffficient learning and inference: Our approach has computational cost
O(n) where n is the length of structured data. This is the same as ex-
isting methods like CVAE and GVAE which do not enforce semantics
in generation. During inference, the SD-VAE runs with semantic guid-
ing on-the-fly, while the existing alternatives generate many candidates
for semantic checking.

e Strong empirical performance: We demonstrate the effectiveness of the
SD-VAE through applications in two domains, namely (1) the subset
of Python programs and (2) molecules. Our approach consistently and
significantly improves the results in evaluations including generation,
reconstruction and optimization.



2.2 Background

Before introducing our model and the learning algorithm, we first provide
some background knowledge which is important for understanding the pro-
posed method.

2.2.1 Variational Autoencoder

The variational autoencoder [79, 126] provides a framework for learning the
probabilistic generative model as well as its posterior, respectively known as
decoder and encoder. We denote the observation as x, which is the structured
data in our case, and the latent variable as z. The decoder is modeling the
probabilistic generative processes of x given the continuous representation z
through the likelihood pg(z|z) and the prior over the latent variables p(z),
where 6 denotes the parameters. The encoder approximates the posterior
po(z|z) o< po(x|z)p(z) with a model gy (z|z) parametrized by 1. The decoder
and encoder are learned simultaneously by maximizing the evidence lower
bound (ELBO) of the marginal likelihood, i.e.,

L(X;0,1) = ZEq(Z|x) [log po(|2)p(2) — log qy(z|z)]

zeX

< Zlog/m(ﬂz)p(z)dz,

zeX

where X denotes the training datasets containing the observations.

2.2.2 Context Free Grammar and Attribute Grammar

Context free grammar A context free grammar (CFG) is defined as
G = (V, X, R, s), where symbols are divided into V, the set of non-terminal
symbols, ¥, the set of terminal symbols and s € V), the start symbol. Here R
is the set of production rules. Each production rule » € R is denoted as r =
o — f for a € V is a nonterminal symbol, and 3 = wjus ... up € (VUE)"
is a sequence of terminal and/or nonterminal symbols.

Attribute grammar To enrich the CFG with “semantic meaning”, [81]
formalizes attribute grammar that introduces attributes and rules to CFG.
An attribute is an attachment to the corresponding nonterminal symbol in
CFG, written in the format (v).a for v € V. There can be two types of
attributes assigned to non-terminals in G: the inherited attributes and the
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synthesized attributes. An inherited attribute depends on the attributes from
its parent and siblings, while a synthesized attribute is computed based on
the attributes of its children. Formally, for a production uy — ujus ... ug,
we denote I (u;) and S(u;) be the sets of inherited and synthesized attributes
of u; for i € {0,...,|B|}, respectively.

A motivational example We here exemplify how the above defined at-

tribute grammar enriches CFG with non-context-free semantics. We use the

following toy grammar, a subset of SMILES that generates either a chain or
a cycle with three carbons:

Production Semantic Rule

(s) — (atom)y ‘C’ (atom), (s) .matched « (atom);.set () (atom)s . set,

(s) .ok + (atom);.set = (s).matched = (atom)s.set

(atom) — ‘C’ | ‘C’ (bond) (digit) (atom).set + & | concat({(bond).val, (digit).val)

(bond) — =7 | =" | ‘¥ (bond) .val « ‘= | ‘=" | ‘4

(digit) — V|27 | ... |9 (digit) .val < ‘1" | ‘2" .. | ‘9

where we show the production rules in CFG with — on the left, and the
calculation of attributes in attribute grammar with < on the left. Here we
leverage the attribute grammar to check (with attribute matched) whether
the ringbonds come in pairs: a ringbond generated at (atom); should match
the bond type and bond index that generated at (atom)s, also the semantic
constraint expressed by (s) .ok requires that there is no difference between
the set attribute of (atom); and (atom)s. Such constraint in SMILES is
known as cross-serial dependencies (CSD) [22] which is non-context-free [136].
See Appendix 2.A.3 for more explanations. Figure 2.2 illustrates the process
of performing syntax and semantics check in compilers. Here all the at-
tributes are synthetic, i.e., calculated in a bottom-up direction.

So generally, in the semantic correctness checking procedure, one need to
perform bottom-up procedures for calculating the attributes after the parse
tree is generated. However, in the top-down structure generating process, the
parse tree is not ready for semantic checking, since the synthesized attributes
of each node require information from its children nodes, which are not gener-
ated yet. Due to such dilemma, it is nontrivial to use the attribute grammar
to guide the top-down generation of the tree-structured data. One straight-
forward way is using acceptance-rejection sampling scheme, i.e., using the
decoder of CVAE or GVAE as a proposal and the semantic checking as the
threshold. It is obvious that since the decoder does not include semantic

11
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Figure 2.2: Bottom-up syntax and semantics check in compilers.

guidance, the proposal distribution may raise semantically invalid candidate
frequently, therefore, wasting the computational cost in vain.

2.3 Syntax-Directed Variational Autoencoder

As described in Section 2.2.2, directly using attribute grammar in an offline
fashion (i.e., after the generation process finishes) is not efficient to address
both syntax and semantics constraints. In this section we describe how to
bring forward the attribute grammar online and incorporate it into VAE, such
that our VAE addresses both syntactic and semantic constraints. We name
our proposed method Syntax-Directed Variational Autoencoder (SD-VAE).

2.3.1 Stochastic Syntax-Directed Decoder

By scrutinizing the tree generation, the major difficulty in incorporating the
attributes grammar into the processes is the appearance of the synthesized
attributes. For instance, when expanding the start symbol (s), none of its
children is generated yet. Thus their attributes are also absent at this time,
making the (s).matched unable to be computed. To enable the on-the-fly
computation of the synthesized attributes for semantic validation during tree
generation, besides the two types of attributes, we introduce the stochastic
lazy attributes to enlarge the existing attribute grammar. Such stochasticity
transforms the corresponding synthesized attribute into inherited constraints

12
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Figure 2.3: On-the-fly generative process of SD-VAE in order from (a) to (g).
Steps: (a) stochastic generation of attribute; (b)(f)(g) constrained sampling
with inherited attributes; (c¢) unconstrained sampling; (d) synthesized at-
tribute calculation on generated subtree. (e) lazy evaluation of the attribute
at root node.

in generative procedure; and lazy linking mechanism sets the actual value of
the attribute, once all the other dependent attributes are ready. We demon-
strate how the decoder with stochastic lazy attributes will generate semantic
valid output through the same pedagogical example as in Section 2.2.2. Fig-
ure 2.3 visually demonstrates this process.

The tree generation procedure is indeed sampling from the decoder py(x|2),
which can be decomposed into several steps that elaborated below:

i) stochastic predetermination: in Figure 2.3(a), we start from the
node (s) with the synthesized attributes (s).matched determining the index
and bond type of the ringbond that will be matched at node (s). Since we
know nothing about the children nodes right now, the only thing we can
do is to ‘guess’ a value. That is to say, we associate a stochastic attribute
(s).sa € {0,1}% ~ chzal B(sa;|z) as a predetermination for the sake of the
absence of synthesized attribute (s).matched, where B(-) is the Bernoulli
distribution. Here C, is the maximum cardinality possible 3 for the corre-
sponding attribute a. In above example, the 0 indicates no ringbond and 1
indicates one ringbond at both (atom); and (atom),, respectively.

3Note that setting threshold for C, assumes a mildly context sensitive grammar (e.g.,
limited CSD).
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Algorithm 1 Decoding with Stochastic Syntax-Directed Decoder

Global variables: CFG: G = (V, %, R, s), decoder network parameters 6
procedure GENTREE(node, T)
Sample stochastic lazy attribute node.s, ~ By(sa|node, T') > when
introduced on node
Sample production rule r = (a = ) € R ~ py(r|ctx, node, T). > The
conditioned variables encodes the semantic constraints in tree generation.

ctx <~ RNN(ctzx,r) > update context vector
fori=1,...,|0| do
v; < Node(u;, node, {"U]};;ll) > node creation with parent and
siblings’ attributes
GenTree(v;, T) > recursive generation of children nodes
Update synthetic and stochastic attributes of node with v; > Lazy
linking
end for

end procedure

ii) constraints as inherited attributes: we pass the (s).sa as inher-
ited constraints to the children of node (s), i.e., (atom); and {atom)s to ensure
the semantic validation in the tree generation. For example, Figure 2.3(b)
‘sa=1’ is passed down to (atom);.

iii) sampling under constraints: without loss of generality, we as-
sume (atom); is generated before (atom)s. We then sample the rules from
pa(r|{atom)y, (s), z) for expanding (atom);, and so on and so forth to gener-
ate the subtree recursively. Since we carefully designed sampling distribution
that is conditioning on the stochastic property, the inherited constraints will
be eventually satisfied. In the example, due to the (s).sa = ‘1’, when
expanding (atom);, the sampling distribution py(r|(atom)i, (s), z) only has
positive mass on rule (atom) — “C’ (bond) (digit).

iv) lazy linking: once we complete the generation of the subtree rooted
at (atom), the synthesized attribute (atom);.set is now available. Accord-
ing to the semantic rule for (s).matched, we can instantiate (s).matched =
(atom),.set = {*=1"}. This linking is shown in Figure 2.3(d)(e). When ex-
panding (atom)s,, the (s).matched will be passed down as inherited attribute
to regulate the generation of (atom)s,, as is demonstrated in Figure 2.3(f)(g).

In summary, the general syntax tree 7 € L(G) can be constructed step
by step, within the languages L(G) covered by grammar G. In the beginning,
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TO) = root, where T00t.sympor = s Which contains only the start symbol s.
At step t, we will choose an nonterminal node in the frontier* of partially
generated tree 7 to expand. The generative process in each stept = 0,1, . ..
can be described as:
1. Pick node v € Fr(T®) where its attributes needed are either satis-
fied, or are stochastic attributes that should be sampled first according
to Bernoulli distribution B(-|[v®, T®);

2. Sample rule r® = a® — B® € R according to distribution py(r®|v®, TM),

where v ., 0 = o) and B¢ = ugt)ugt) . 'ul(;)(”\’ i.e., expand the

nonterminal with production rules defined in CFG.

3. TEHD = TOUY{(v®, ugt))},lii(;)‘, i.c., grow the tree by attaching 5% to
v®. Now the node v has children represented by symbols in .
The above process continues until all the nodes in the frontier of 7 are all
terminals after 7' steps. Then, we obtain the algorithm 1 for sampling both
syntactic and semantic valid structures.

In fact, in the model training phase, we need to compute the likelihood
po(z|z) given x and z. The probability computation procedure is similar to
the sampling procedure in the sense that both of them requires tree genera-
tion. The only difference is that in the likelihood computation procedure, the
tree structure, 1.e., the computing path, is fixed since z is given; While in the
sampling procedure, it is sampled following the learned model. Specifically,
the generative likelihood can be written as:

T
po(z]2) = Hpe(rt|cta:(t), node® , T By(sa,|node®, TM) 2)

t=0

where ctz(®) = z and ctz® = RNN(ry, ctz*=Y). Here RNN can be commonly
used LSTM, etc..

2.3.2 Structure-Based Encoder

As we introduced in section 2.2, the encoder, ¢, (z|x) approximates the poste-
rior of the latent variable through the model with some parametrized function
with parameters 1. Since the structure in the observation x plays an impor-
tant role, the encoder parametrization should take care of such information.

4Here frontier is the set of all nonterminal leaves in current tree.
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The recently developed deep learning models [45, 37, 93] provide powerful
candidates as encoder. However, to demonstrate the benefits of the proposed
syntax-directed decoder in incorporating the attribute grammar for semantic
restrictions, we will exploit the same encoder in [85] for a fair comparison
later.

We provide a brief introduction to the particular encoder model used
in [85] for a self-contained purpose. Given a program or a SMILES sequence,
we obtain the corresponding parse tree using CFG and decompose it into
a sequence of productions through a pre-order traversal on the tree. Then,
we convert these productions into one-hot indicator vectors, in which each
dimension corresponds to one production in the grammar. We will use a deep
convolutional neural networks which maps this sequence of one-hot vectors
to a continuous vector as the encoder.

2.3.3 Model Learning

Our learning goal is to maximize the evidence lower bound in Eq 1. Given the
encoder, we can then map the structure input into latent space z. The vari-
ational posterior ¢(z|z) is parameterized with Gaussian distribution, where
the mean and variance are the output of corresponding neural networks. The
prior of latent variable p(z) = N(0,I). Since both the prior and posterior
are Gaussian, we use the closed form of KL-divergence that was proposed
in [79]. In the decoding stage, our goal is to maximize py(x|z). Using the
Equation (2), we can compute the corresponding conditional likelihood. Dur-
ing training, the syntax and semantics constraints required in Algorithm 1
can be precomputed. In practice, we observe no significant time penalty
measured in wall clock time compared to previous works.

2.4 Related work

Generative models with discrete structured data have raised increasing in-
terests among researchers in different domains. The classical sequence to se-
quence model [139] and its variations have also been applied to molecules [54].
Since the model is quite flexible, it is hard to generate valid structures with
limited data, though [70] shows that an extra validator model could be
helpful to some degree. Techniques including data augmentation [18], active
learning [71] and reinforcement learning [58] also been proposed to tackle this
issue. However, according to the empirical evaluations from [15], the validity
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is still not satisfactory. Even when the validity is enforced, the models tend
to overfit to simple structures while neglect the diversity.

Since the structured data often comes with formal grammars, it is very
helpful to generate its parse tree derived from CFG, instead of generat-
ing sequence of tokens directly. The Grammar VAE[85] introduced the
CFG constrained decoder for simple math expression and SMILES string
generation. The rules are used to mask out invalid syntax such that the gen-
erated sequence is always from the language defined by its CFG. [119] uses a
RecursiveReverse-Recursive Neural Network (R3NN) to capture global con-
text information while expanding with CFG production rules. Although
these works follow the syntax via CFG, the context sensitive information can
only be captured using variants of sequence/tree RNNs [3, 44, 170], which
may not be time and sample efficient.

In our work, we capture the semantics with proposed stochastic lazy
attributes when generating structured outputs. By addressing the most
common semantics to harness the deep networks, it can greatly reshape the
output domain of decoder [66]. As a result, we can also get a better genera-
tive model for discrete structures.

2.5 Experiments

We show the effectiveness of our proposed SD-VAE with applications in two
domains, namely programs and molecules. We compare our method with
CVAE [54] and GVAE [85]. CVAE only takes character sequence information,
while GVAE utilizes the context-free grammar. To make a fair comparison,
we closely follow the experimental protocols that were set up in [85]. The
training details are included in Appendix 2.B.

Our method gets significantly better results than previous works. It yields
better reconstruction accuracy and prior validity by large margins, while also
having comparative diversity of generated structures. More importantly, the
SD-VAE finds better solution in program and molecule regression and opti-
mization tasks. This demonstrates that the continuous latent space obtained
by SD-VAE is also smoother and more discriminative.

2.5.1 Settings

Here we first describe our datasets in detail. The programs are represented
as a list of statements. Each statement is an atomic arithmetic opera-
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tion on variables (labeled as v0, v1, ---, v9) and/or immediate numbers
(1,2,...,9). Some examples are listed below:

v3=sin (v0) ;v8=exp (2);vI9=v3-v8;vb=v0xv9; return:vb
v2=exp (v0) ;v7=v2xv0;v9=cos (v7);v8=cos (v9);return:v8

Here vO0 is always the input, and the variable specified by return (re-
spectively v5 and v8 in the examples) is the output, therefore it actually
represent univariate functions f : R — R. Note that a correct program
should, besides the context-free grammar specified in Appendix 2.A.1, also
respect the semantic constraints. For example, a variable should be defined
before being referenced. We randomly generate 130,000 programs, where
each consisting of 1 to 5 valid statements. Here the maximum number of
decoding steps 7' = 80. We hold 2000 programs out for testing and the rest
for training and validation.

For molecule experiments, we use the same dataset as in [85]. It contains
250,000 SMILES strings, which are extracted from the ZINC database [54].
We use the same split as [85], where 5000 SMILES strings are held out for
testing. Regarding the syntax constraints, we use the grammar specified in
Appendix 2.A.2, which is also the same as [85]. Here the maximum number
of decoding steps T = 278.

For our SD-VAE, we address some of the most common semantics:

Program semantics We address the following: a) variables should
be defined before use, b) program must return a variable, ¢) number of
statements should be less than 10.

Molecule semantics The SMILES semantics we addressed includes:
a) ringbonds should satisfy cross-serial dependencies, b) explicit valence of
atoms should not go beyond permitted. For more details about the semantics
of SMILES language, please refer to Appendix 2.A.3.

2.5.2 Reconstruction Accuracy and Prior Validity
We use the held-out dataset to measure the reconstruction accuracy of VAEs.
For prior validity, we first sample the latent representations from prior dis-
tribution, and then evaluate how often the model can decode into a valid
structure. Since both encoding and decoding are stochastic in VAEs, we
follow the Monte Carlo method used in [85] to do estimation:

a) reconstruction: for each of the structured data in the held-out dataset,
we encode it 10 times and decoded (for each encoded latent space represen-
tation) 25 times, and report the portion of decoded structures that are the
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Program Zinc SMILES
Methods Reconstruction %* Valid Prior % Reconstruction % Valid Prior %

SD-VAE  96.46 (99.90,99.12,90.37) 100.00 76.2 43.5
GVAE 71.83 (96.30, 77.28,41.90) 2.96 53.7 7.2
CVAE 13.79 (40.46,0.87,0.02) 0.02 44.6 0.7

Table 2.1: Reconstructing Accuracy and Prior Validity estimated using
Monte Carlo method. Our proposed method (SD-VAE) performance sig-
nificantly better than existing works.

* We also report the reconstruction % grouped by number of statements (3,
4, 5) in parentheses.

same as the input ones; b) validity of prior: we sample 1000 latent represen-
tations z ~ N (O,I). For each of them we decode 100 times, and calculate
the portion of 100,000 decoded results that corresponds to valid Program or
SMILES sequences.

Program We show in the left part of Table 2.1 that our model has near
perfect reconstruction rate, and most importantly, a perfect valid decoding
program from prior. This huge improvement is due to our model that utilizes
the full semantics that previous work ignores, thus in theory guarantees per-
fect valid prior and in practice enables high reconstruction success rate. For
a fair comparison, we run and tune the baselines in 10% of training data and
report the best result. In the same place we also report the reconstruction
successful rate grouped by number of statements. It is shown that our model
keeps high rate even with the size of program growing.

SMILES  Since the settings are exactly the same, we include CVAE
and GVAE results directly from [85]. We show in the right part of Table 2.1
that our model produces a much higher rate of successful reconstruction and
ratio of valid prior. Figure 2.8 in Appendix 2.C.2 also demonstrates some
decoded molecules from our method. Note that the results we reported have
not included the semantics specific to aromaticity into account. If we use
an alternative kekulized form of SMILES to train the model, then the valid
portion of prior can go up to 97.3%.

2.5.3 Bayesian Optimization

One important application of VAEs is to enable the optimization (e.g., find
new structures with better properties) of discrete structures in continuous
latent space, and then use decoder to obtain the actual structures. Following
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the protocol used in [85], we use Bayesian Optimization (BO) to search the
programs and molecules with desired properties in latent space. Details about
BO settings and parameters can be found in Appendix 2.C.1.

Method Program Score

3F v7=5+v0;v5=cos (v7) j return:v5 0.1742
Ground Truth

CVAE v2=1-v0;v9=cos (v2); return:v9 0.2889

v5=4+v0;v3=cos (v5) ; return:v3 0.3043
\ ‘A ¥3=1/5;v9=-1; vl=v0+v3; return:v3 0.5454
N GVAE v2=1/5;v9=-1;v7=v2+v2; return:v7 0.5497

4 \y 2 N4 v2=1/5;v5=-v2;v9=v5+v5; return:v9 0.5749
s

v6=sin (v0) ; vS=exp (3) ; v4=v0*v6; return:ve 0.1206
s SD-VAE v5=6+v0;v6=sin (v5);return:vé6 0.1436
SO-VAE CVAE v6=sin (v0);vd=sin (v6);v5=cos (v4);v9=2/v4;return:v4d 0.1456
3t
Ground Truth v1=sin(v0);v2=exp (vl);v3=v2-1;return:v3

Figure 2.4: On the left are best programs found by each method using
Bayesian Optimization. On the right are top 3 closest programs found by
each method along with the distance to ground truth (lower distance is bet-
ter). Both our SD-VAE and CVAE can find similar curves, but our method
aligns better with the ground truth. In contrast the GVAE fails this task by
reporting trivial programs representing linear functions.

Finding program In this application the models are asked to find
the program which is most similar to the ground truth program. Here the
distance is measured by log(1 + MSE), where the MSE (Mean Square Error)
calculates the discrepancy of program outputs, given the 1000 different inputs
v0 sampled evenly in [—5,5]. In Figure 2.4 we show that our method finds
the best program to the ground truth one compared to CVAE and GVAE.

Molecules Here we optimize the drug properties of molecules. In this
problem, we ask the model to optimize for octanol-water partition coefficients
(a.k.a log P), an important measurement of drug-likeness of a given molecule.
As [54] suggests, for drug-likeness assessment log P is penalized by other
properties including synthetic accessibility score [50]. In Figure 2.5 we show
the the top-3 best molecules found by each method, where our method found
molecules with better scores than previous works. Also one can see the
molecule structures found by SD-VAE are richer than baselines, where the
latter ones mostly consist of chain structure.

2.5.4 Predictive Performance of Latent Representation

The VAEs also provide a way to do unsupervised feature representation learn-
ing [54]. In this section, we seek to to know how well our latent space predicts
the properties of programs and molecules. After the training of VAEs, we
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Figure 2.5: Best top-3 molecules and the corresponding scores found by each
method using Bayesian Optimization.

Program Zinc
Method LL RMSE LL RMSE

CVAE -4.943 £ 0.0538 3.757 £ 0.026 -1.812 £ 0.004 1.504 £ 0.006
GVAE -4.140 £ 0.038 3.378 £ 0.020 -1.739 £ 0.004 1.404 £+ 0.006
SD-VAE -3.754 + 0.045 3.185 £ 0.025 -1.697 £+ 0.015 1.366 + 0.023

Table 2.2: Predictive performance using encoded mean latent vector. Test
LL and RMSE are reported.

dump the latent vectors of each structured data, and train the sparse Gaus-
sian Process with the target value (namely the error for programs and the
drug-likeness for molecules) for regression. We test the performance in the
held-out test dataset. In Table 2.2, we report the result in Log Likelihood
(LL) and Regression Mean Square Error (RMSE), which show that our SD-
VAE always produces latent space that are more discriminative than both
CVAE and GVAE baselines. This also shows that, with a properly designed
decoder, the quality of encoder will also be improved via end-to-end training.

2.5.5 Diversity of Generated Molecules

Inspired by [15], here we measure the diversity of generated molecules as an
assessment of the methods. The intuition is that a good generative model
should be able to generate diverse data and avoid mode collapse in the learned
space. We conduct this experiment in the SMILES dataset. We first sample
100 points from the prior distribution. For each point, we associate it with a
molecule, which is the most frequent occurring valid SMILES decoded (we use
50 decoding attempts since the decoding is stochastic). We then, with one of
the several molecular similarity metrics, compute the pairwise similarity and
report the mean and standard deviation in Table 2.3. We see both methods
do not have the mode collapse problem, while producing similar diversity
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Similarity Metric ~ MorganFp MACCS PairFp TopologicalFp

GVAE 0.92 £ 0.10 0.83 + 0.15 0.94 £0.10 0.71 + 0.14
SD-VAE 0.92 £ 0.09 0.83 £0.13 0.95 £ 0.08 0.75 £ 0.14

Table 2.3: Diversity as statistics from pair-wise distances measured as 1 — s,
where s is one of the similarity metrics. So higher values indicate better
diversity. We show mean =+ stddev of (1(2)0) pairs among 100 molecules. Note
that we report results from GVAE and our SD-VAE, because CVAE has very

low valid priors, thus completely only failing this evaluation protocol.

scores. It indicates that although our method has more restricted decoding
space than baselines, the diversity is not sacrificed. This is because we never
rule-out the valid molecules. And a more compact decoding space leads to
much higher probability in obtaining valid molecules.

2.5.6 Visualizing the Latent Space

We seek to visualize the latent space as an assessment of how well our gen-
erative model is able to produces a coherent and smooth space of program
and molecules.

Program Following [21], we visualize the latent space of program by
interpolation between two programs. More specifically, given two programs
which are encoded to p, and p;, respectively in the latent space, we pick
9 evenly interpolated points between them. For each point, we pick the
corresponding most decoded structure. In Table 2.4 we compare our results
with previous works. Our SD-VAE can pass though points in the latent space
that can be decoded into valid programs without error and with visually
more smooth interpolation than previous works. Meanwhile, CVAE makes
both syntactic and semantic errors, and GVAE produces only semantic errors
(reference of undefined variables), but still in a considerable amount.

SMILES For molecules, we visualize the latent space in 2 dimensions.
We first embed a random molecule from the dataset into latent space. Then
we randomly generate 2 orthogonal unit vectors A. To get the latent repre-
sentation of neighborhood, we interpolate the 2-D grid and project back to
latent space with pseudo inverse of A. Finally we show decoded molecules.
In Figure 2.6, we present two of such grid visualizations. Subjectively com-
pared with figures in [85], our visualization is characterized by having smooth
differences between neighboring molecules, and more complicated decoded
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CVAE GVAE SD-VAE

vB exp (9) ; v2=v8+v0;v9=v2/v6; return:v9
jvB=exp (9) ; v3=v8+v0;v9I=v3/v8; return:v9

;v6=v8+v0;v9=v2/v6;return:v9 vé=cos
9;v5=v8v5;return:v5 vé=cos

v8=cos (3) ; vi=exp ;v6=exp (9)

;vB=exp

) 7

Vi (7

)i ireturn:vs v6=cos (7 > v8=v6/9; =v6/vl;return:v7

)i jreturn:v2 v6=cos (7 > v8=v6/9; =v6+vl;return:v7

) V3=V1/9;v6=v3-v3;va-vI-v6; return:va  v6=cos (1) ; vB=v6/9; v1=T+v8;vI=v6+v8; return:v7
v ) iV5=v5/2;v6=v2-v5;v2=v0-v6; return:v2  v6= exp(\/O) VB=v6/2;v9=6%V8; vI=v9+v9; return:v7
v5=exp (v vl=sin(1);v7=v8/2;v8=v7/v9;vd=v4-v8;return:vd  v6=exp (v0);v8=v6-4;v9I=6xv8;v7=v9+v8; return:v7
va=exp (v v8=sin (1) ;v2=v8/2;v8=v0/v9; 8;return:vd  v6=exp (v0);v8=v6-4;v9=6xv6; v7=v9+v8; return:v7
vd=exp (v0 (v0);

vé=exp (v0) ; v2=v6-4;v8=v0*vl;v7=v4+v8; return:v7 vé=exp vB8=v6-4;v4=4*v6;vI=v4+v8; return:v7

Table 2.4: Interpolation between two valid programs (the top and bottom
ones in brown) where each program occupies a row. Programs in red are with
syntax errors. Statements in blue are with semantic errors such as referring
to unknown variables. Rows without coloring are correct programs. Observe
that when a model passes points in its latent space, our proposed SD-VAE
enforces both syntactic and semantic constraints while making visually more
smooth interpolation. In contrast, CVAE makes both kinds of mistakes,
GVAE avoids syntactic errors but still produces semantic errors, and both
methods produce subjectively less smooth interpolations.

structures.
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Figure 2.6: Latent Space visualization. We start from the center molecule
and decode the neighborhood latent vectors (neighborhood in projected 2D
space).
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2.6 Conclusion

In this paper we propose a new method to tackle the challenge of address-
ing both syntax and semantic constraints in generative model for structured
data. The newly proposed stochastic lazy attribute presents a the systemati-
cal conversion from offline syntax and semantic check to online guidance for
stochastic generation, and empirically shows consistent and significant im-
provement over previous models, while requiring similar computational cost
as previous model.

Our work opens the door for future works in several directions that are
worthy of investigating. Firstly, we would like to explore the refinement of
formalization on the more theoretical ground and investigate the application
of such formalization on a more diverse set of data modality, especially follow-
ing recent advances in computation linguistics provides insights of semantics
modeling.

Secondly, the performance of works in our like, e.g., modeling struc-
tured data on top of human-designed formal languages with string yields
representing data, depends on how good the formal language itself could
be. For example, it is better for programs than molecules, because com-
puter programs, with its formalities, are designed from scratch following
programming language theories while SMILES strings for molecules are less
than ideal for being designed solely for easy human entry of molecules.
Along this line, following up are works concerns better semantics model-
ing for programs [137, 138]. On the other hand, for modeling chemical
and material molecules whose formal languages are less than ideal, the com-
munity has moved forward with alternatives based on representing data as
graphs [74, 168].
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Chapter Appendix

2.A Grammar

2.A.1 Grammar for Program Syntax

The syntax grammar for program is a generative contest free grammar start-
ing with (program,).

program) (stat list)

stat list) (stat) *;’ (stat list) | (stat)
stat) (assign) | (return)

assign) (lhs) ‘=" (rhs)

return) ‘return:’ (lhs)

lhs) (var)

var) ‘v’ (var id)

(

(

(

(

(

(

(va
(digit)
(rhs)
(expr)
(

(

(

(

(

(

(

(

‘2|3 e T8y
(eapr)

(unary expr) | (binary expr)

unary expr) (unary op) (operand) | (unary func) ‘ (" {(operand) )’
binary expr) (operand) (binary op) (operand)

unary op) 4=

‘sin’ | ‘cos’ | ‘exp’

Cad ey | ey ] ey
s B B

unary func)

binary op)

e e

operand) (var) | (immediate number)

immediate number) — (digit) ‘.’ (digit)
ngZt> N 407 ’ 417 | 427 ‘ 437 | 447 ‘ 457 ’ 467 ‘ 477 ’ 487 ‘ 497
2.A.2 Grammar for Molecule Syntax

Our syntax grammar for molecule is based on OpenSMILES standard, a
context free grammar starting with (s).

(s) — (atom)

25



smiles)

atom)

aliphatic organic)

bracket atom)

bracket atom (isotope))

(bracket atom (chiral))

(bracket atom (h count))

symbol)
isotope)
digit)
chiral)

ringbond)

o~ o~ o~ o~ o~ o~ o~ o~~~

branched atom)

(ringbonds)
(branches)
(branch)

(

chain)

(
(
(
(aromatic organic)
(
(

bracket atom (charge))

— ! — 4 ——4L L L L L

I

—4 1 1 d

(chain)

(bracket atom) | (aliphatic organic) | (aromatic organic)
B¢ N O ST PT|CFT] T | ‘el | ‘Br?

¢ |'m’ |0 |

‘[’ (bracket atom (isotope)) ‘1’

isotope) (symbol) (bracket atom (chiral))
symbol) (bracket atom (chiral))
isotope) (symbol) | (symbol)

{

(

{
(chiral) (bracket atom (h count))
(bracket atom (h count))

(chiral)

(h count) (bracket atom (charge))
(bracket atom (charge))

(
(
(
(

charge)

aliphatic organic) | (aromatic organic)
digit) | (digit) (digit) | (digit) (digit) (digit)
2|3 |45 6 | T |

‘@ | ‘ee’

‘"’ | ‘B (digit)

|2 (digit) |4 | 4 (digit)

SN DAEN

digit)

(

(atom) | {atom) (branches) | (atom) (ringbonds)
(atom) (ringbonds) (branches)
(
(

ringbonds) (ringbond) | (ringbond)
branches) (branch) | (branch)
(" (chain) ) | ’(" (bond) (chain)’)’

(branched atom) | (chain) (branched atom)
(chain) (bond) (branched atom)
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‘ Ringbond matching crossed with each other ‘

COclccc (N2CCn3c2nn(C’/C/"(/N)=O)c(=0)c3=0)cc1

Figure 2.7: Example of cross-serial dependencies (CSD) that exhibits in
SMILES language.

2.A.3 Examples of SMILES semantics

Here we provide more explanations of the semantics constraints that con-
tained in SMILES language for molecules.
Specifically, the semantics we addressed here are:

1. Ringbond matching: The ringbonds should come in pairs. Each
pair of ringbonds has an index and a bond-type associated. What
the SMILES semantics requires is exactly the same as the well-known
cross-serial dependencies (CSD) in formal language. CSD also appears
in some natural languages, such as Dutch and Swiss-German. Another
example of CSD is a sequence of multiple different types of parentheses
where each separately balanced disregarding the others. See Figure 2.7
for an illustration.

2. Explicit valence control: Intuitively, the semantics requires that
each atom cannot have too many bonds associated with it. For exam-
ple, a normal carbon atom has maximum valence of 4, which means
associating a Carbon atom with two triple-bonds will violate the se-
mantics.

2.A.4 Dependency graph introduced by Attribute Grammar

Suppose there is a production r = ug — ujuy ... u5 € R and an attribute
u;.a we denote the dependency set

D" (u;.a) = {u;.blu;.b is required for calculating u;.a} .

The union of all dependency sets Dgftt) = U,eruer D7 (ui.a) induces a depen-
dency graph, where nodes are the attributes and directed edges represents

the dependency relationships between those attributes computation. Here T
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is an (partial or full) instantiation of the generated syntax tree of grammar
G. Let D"(w;) = {u;|3a,b : u;.b € D"(u;.a)} and Dy = (J D" (u;),

that is, D7 is constructed from Dgﬂm) by merging nodes with the same sym-
bol but different attributes, we call Dggtt) is noncircular if the corresponding
D+ is noncircular.

In our paper, we assume the noncircular property of the dependency
graph. Such property will be exploited for top-down generation in our de-

coder.

reT u Er

2.B Training Details

Since our proposed SD-VAE differentiate itself from previous works (CVAE,
GVAE) on the formalization of syntax and semantics, we therefore use the
same deep neural network model architecture for a fair comparison. In en-
coder, we use 3-layer one-dimension convolution neural networks (CNNs)
followed by a full connected layer, whose output would be fed into two sepa-
rate affine layers for producing i and o respectively as in reparameterization
trick; and in decoder we use 3-layer RNNs followed by a affine layer activated
by softmax that gives probability for each production rule. In detail, we use
56 dimensions the latent space and the dimension of layers as the same num-
ber as in [85]. As for implementation, we use [85]’s open sourced code for
baselines, and implement our model in PyTorch framework °.

In a 10% validation set we tune the following hyper parameters and report
the test result from setting with best valid loss. For a fair comparison, all
tunings are also conducted in the baselines.

We use ReconstructLoss+aKLDivergence as the loss function for train-
ing. A natural setting is @ = 1, but [85] suggested in their open-sourced
implementation® that using @ = 1/LatentDimension would leads to better
results. We explore both settings.
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Figure 2.8: Visualization of reconstruction. The first column in each figure
presents the target molecules. We first encode the target molecules, then
sample the reconstructed molecules from their encoded posterior.

2.C DMore experiment details

2.C.1 Bayesian Optimization

The Bayesian optimization is used for searching latent vectors with desired
target property. For example, in symbolic program regression, we are inter-
ested in finding programs that can fit the given input-output pairs; in drug
discovery, we are aiming at finding molecules with maximum drug likeness.
To get a fair comparison with baseline algorithms, we follow the settings used
in [85].

Specifically, we first train the variational autoencoder in an unsupervised
way. After obtaining the generative model, we encode all the structures
into latent space. Then these vectors and corresponding property values
(i.e., estimated errors for program, or drug likeness for molecule) are used
to train a sparse Gaussian process with 500 inducing points. This is used

Shttp://pytorch.org/
Shttps://github.com/mkusner/grammarVAE/issues/2
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later for predicting properties in latent space. Next, 5 iterations of batch
Bayesian optimization with the expected improvement (EI) heuristic is used
for proposing new latent vectors. In each iteration, 50 latent vectors are
proposed. After the proposal, the newly found programs/molecules are then
added to the batch for next round of iteration.

During the proposal of latent vectors in each iteration, we perform 100
rounds of decoding and pick the most frequent decoded structures. This
helps regulates the decoding due to randomness, as well as increasing the
chance for baselines algorithms to propose valid ones.

2.C.2 Recontruction

We visualize some reconstruction results of SMILES in Figure 2.8. It can
be observed that, in most cases the decoder successfully recover the exact
origin input. Due to the stochasticity of decoder, it may have some small
variations.
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3 Social Relation Inference via Label Propa-

gation ’

3.1 Introduction

In collaboration networks, edges, or social relations [149], are formed between
people with shared interests. Social relations in networks are complex and
nuanced, which often cannot be characterized by a single label. Consider a
co-author network between researchers where the social relations between two
researchers are the research areas they collaborate in. Since collaborations
can occur in different research areas, the social relation between researchers
is inherently multifaceted. Many applications on collaboration networks can
benefit from an awareness of social relations, such as node classification [165],
recommendation [144] and anomaly detection [162]. However, in many net-
works, such label information (social relations) is far from complete. It is
thus desirable to learn to infer social relations associated with the unlabeled
edges.

We formalize the task of social relation inference as a semi-supervised
multi-label edge classification problem on networks. Given the network struc-
ture and a limited amount of labeled edges, our goal is to infer the labels of
the rest of the edges. There are several previous studies on inferring social
ties from social networks, which is similar to our definition of social rela-
tions [144, 142]. However, these works assume that each edge corresponds
to a single relation type, which may not be the case in collaboration net-
works. Moreover, they only consider first-order or second-order relationships
between nodes, but fails to model higher-order relationships that play an
important role in network inference tasks [24].

Another relevant area is network embeddings [120, 141, 57], which aim at
learning low-dimensional latent representations of nodes in a network. Also,
representations of larger-scale components of networks (such as edges and
subgraphs) can be composed from these node representations. These rep-
resentations can then be used as features for a wide range of downstream

"The content of this section is taken from:
[146] Yingtao Tian, Haochen Chen, Bryan Perozzi, Muhao Chen, Xiaofei Sun, and Steven
Skiena. Social relation inference via label propagation. In Proceedings of the 41st European
Conference on Information Retrieval, ECIR 2019, Cologe, Germany, April 1/-18, 2018,
2019
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tasks on networks, including social relation inference. As a pioneering work,
DeepWalk [120] generates fixed-length random walk sequences in networks
and trains a skip-gram model [109] on these sequences to obtain node em-
beddings. While achieving state-of-the-art results on a handful of network
inference tasks such as node classification and link prediction [120, 57|, the
semantics of edges in networks are seldom exploited by network embedding
models. Moreover, we find that they usually ignore the unique properties
possessed by different types of networks and by different downstream tasks.
Also, many of them are computationally expensive: learning network em-
beddings of a one-million node network can take several days on a single
CPU.

In this paper, we propose a simple but effective method for social re-
lation inference on collaboration networks. Our method is based on the
observation that social relations between people in collaboration networks
are determined by their shared interests. As such, the networks are highly
homophilous and there is a natural connection between the (hidden) labels
of the nodes, and the provided edge labels. Using this relationship, we first
transform the edge labels into a node labeling. Next, to alleviate any data
sparsity problem, we perform label propagation on the input network to ob-
tain label distribution for all nodes. Label propagation [174, 154] represents a
class of semi-supervised learning methods which find numerous applications
in graph mining. For social relation inference, we find that label propagation
has several desirable properties compared to the neural methods mentioned
before: it is extremely efficient and it makes good use of the high level of ho-
mophily exhibited in collaboration networks [121]. Finally, once node labels
have been obtained, the label distribution of edges can be easily inferred from
the label distribution of their endpoints. Experimental results on real-world
networks show that our method outperforms state-of-the-art methods by a
large margin.

3.2 Problem Definition and Notation

We hereby formalize the problem of social relation inference in collaboration
networks. Let G = (V, E) be an undirected graph, where V' are the nodes
in the graph and E represent its edges. Let A be the adjacency matrix of
G. Let L = (Iy,ls,- -+ ,lx) be the set of relation types (labels). A partially
labeled network is then defined as G = (V, £, Ey,Yy), where Ef is the set
of labeled edges, Ey is the set of unlabeled edges with F;, U By = E. Y],
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Algorithm 2 LabelProp(G, P)
Input: graph G, initial node label distribution P, rounds of iteration &
Output: node label distribution after propagation Yy € RIVI*IZ

Compute the degree matrix D: D;; + Zj Ajj
Compute the transition matrix: Q <+ D~'A
Y© ¢« p
fori=0tok—1do
Yyt « Qy )
end for
Yy = Y®)
return YV

represents the relation types associated with the labeled edges in Ej, with
VYL(i) € Y, : Y(i) € L. The objective of social relation inference is to
predict the relation types Yy of the unlabeled edges Ey:

f G = (V, EL,EU,YL) — YU (3)

We denote the i-th row and 7j-th element of a matrix M as M; and M;;.

3.3 Method

3.3.1 Step 1: From Edge Labels to Node Labels

One challenge with social relation inference is that the labels we seek to
predict are associated with edges, instead of nodes. However, most machine
learning algorithms on graphs only operate on nodes. To bridge this gap,
we note that collaboration networks possess a unique property: edges are
typically formed between two people which have shared interests. Such shared
interests can very well be characterized by the labels of edges. This means
that we should be able to infer the latent interests of nodes based on their
corresponding edge labels.

Formally, we seek to estimate the probability distribution matrix P €
RIVIXILL for all nodes over the label space L. For ease of presentation, we
assume that the training data is given in the form of triplets ¢ = (u,v,1),
where u,v € V,l € L. In other words, if an edge has several labels, then we
construct one triplet for each label. We define the set of all training triplets
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as T'. Assume the label distribution of v and v are independent, the strength
of relation [ between u and v can be estimated as:

Pr(llu,v) = Py - Py (4)
Our objective is to maximize the probability of observing the relations in 7'
as given by:
e=1] I Pru,v) (5)
ueV  (v,l)
(u,v,l)ET

Then, for a certain u € V', our goal is to minimize the following objective:

—logly=— > (log Py+logP,) (6)
v,l
(u,(v,l))GT
Since P is the probability distribution of labels, we have the constraint
> ier, Pu = 1. The Lagrangian function of Eq. (6) is:

£Po N == Y (log Pu+1log Pu) + X3 Pu—1) (7)
(v.0) leL
(u,w,)eT

For all [ € L, we take the derivative of Eq. 7 w.r.t. P, and set it to zero:

#(u, 1)
— A=0 8
pt (8)
where #(u,[) is the number of co-occurrences of u and [ in 7', with v being
marginalized out. It is now clear that P, = @ Combined with the

constraint ), ., Py = 1, we have A = Y, _, #(u,[). Finally, the closed-form
estimation of P, is calculated as: Py = #(u, 1)/, #(u,1).

Concretely, we can simply compute the relative frequency that each node
co-occur with each label, which gives us the initial label distribution P of all
nodes.

3.3.2 Step 2: Label Propagation

Labeled edges are often scarce in real-world collaboration networks. As a
result, using the procedure outlined above, we may get an empty label dis-
tribution for most of the nodes (as they have no edges). To alleviate this

34



Table 3.1: Statistics of the networks used in our experiments.

Dataset # Vertices # Edges # Train # Test # Valid # Classes
Arnet-Small 187,939 1,619,278 1,579,278 20,000 20,000 100
Arnet-Medium 268,037 2,747,386 2,147386 300,000 300,000 500
Arnet-Large 945,589 5,056,050 3,856,050 600,000 600,000 500

problem, we propose using label propagation [174] on G to spread the in-
formation from labeled edges around the graph. Algorithm 2 details the
process. We start from the initial label distribution obtained in Step 1 and
repeatedly distribute node labels to the neighboring nodes.

3.3.3 Step 3: From Node Labels to Edge Labels

Once we have obtained the label distribution for all nodes, we can easily
compute the label distribution for edges by reusing Eq. 4. For each edge
e = (u,v), the strength of relation [ is P, - P,. The ranking of relation
strengths serves as our prediction of social relations.

3.3.4 Time Complexity Analysis

The majority of time complexity is contributed by Algorithm 2, which takes
O(k - (|E|+ |V|-|L])). In our experiments, it is further shown that a small
value of k is sufficient for our model to converge: empirically, we take k =5
based on the performance on the validation set. We provide detailed running
time comparison against baseline methods in Section 3.4.

3.4 Experiment

In this section, we describe the datasets for social relation inference and
compare our method against a number of baselines.

3.4.1 Dataset

We use the processed ArnetMiner [143] datasets provided by TransNet [149].
ArnetMiner is a large-scale co-author network with over a million authors
and four million collaboration relations. The social relations between re-
searchers can be reflected by the research areas or topics they collaborate in.
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Concretely, for each co-author relationship, the authors of TransNet extract
representative research interest phrases from the abstracts of co-authored
papers as edge labels. Two collaboration networks of different scales and dif-
ferent amount of labels are provided in this dataset to better investigate the
characteristics of different models. We use the same data split as in TransNet
[149]. The statistics of the datasets are presented in Table 3.1.

3.4.2 Baseline Methods

The baseline methods we use are as follows: (1) DeepWalk [120]: This
is a network embedding method that learns latent representations of nodes
in a graph. (2) LINE [141]: This is a network embedding method that
preserves both first-order and second-order proximities in networks. (3)
node2vec [57]: This is a network embedding method that improves Deep-
Walk with a biased random walk phase. (4) TransE [20]: This is a knowl-
edge base embedding method which simultaneously learns latent representa-
tions of nodes and relations. Since TransE models each relation separately,
we split each edge with & labels into k training instances, one for each label.
(5) TransNet [149]: This method is an extension to TransE which explicitly
models edges with multiple labels. It is also the state-of-the-art method for
social relation inference.

We follow the experimental setup as in TransNet [149]. For all baseline
methods, we use the hyperparameter settings as described in their papers.
For TransE, we use the similarity-based method to predict social relations as
described in [20]. For TransNet, we follow the inference algorithm in their
paper. For the three network embedding methods, we concatenate node rep-
resentations as the feature vector for edges. For social relation inference,
we train a one-vs-rest logistic regression model with L2 regularization imple-
mented in LibLinear [51].

3.4.3 Results and Analysis

In Tables 3.2 and 3.3, we summarize the experimental results using the same
data split as TransNet. Results for all baseline methods (including TransNet)
are taken from the TransNet paper. We can clearly see that our simple
method outperforms all baseline methods by a large margin. The perfor-
mance gain over the best baseline method, TransNet, is at least 3.5% and
up to 8.4% in terms of hits@5. We note that the TransNet data split uses
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Table 3.2: Relation inference re- Table 3.3: Relation inference re-

sults on Arnet-Small. sults on Arnet-Large.
Algorithm Metrics(%) Algorithm Metrics(%)
hits@Q1 hits@Q5 hits@10 hits@1 hits@Q5 hits@10
DeepWalk 13.88 36.80 50.57 DeepWalk 5.41 16.17 23.33
LINE 11.30 31.70 44.51 LINE 4.28 13.44 19.85
node2vec 13.63 36.60 50.27 node2vec 5.39 16.23 23.47
TransE  39.16 78.48 88.54 TransE  15.38 41.87 55.54
TransNet 47.67 86.54 92.27 TransNet 28.85 66.15 75.55
Proposed 48.89 90.13 93.90 Proposed 29.91 72.32 80.86

98%, 76% and 78% edges as training data for Arnet-Small, Arnet-Medium
and Arnet-Large respectively. With such a large amount of training data,
our algorithm achieves the reported performance even without performing
label propagation, which proves the effectiveness of the node label inference
algorithm. Moreover, our algorithm is orders of magnitude faster than all
baseline methods. Using a single CPU core at 2.0GHz, our method finishes
in 5 minutes on Arnet-Small while all baseline methods take more than 24
hours.

The only hyperparameter in our algorithm is the number of rounds of
iterations k for label propagation, which is tuned on the validation set. We
observe that even with only 1% of labeled edges, our label propagation algo-
rithm converges within 5 iterations.

3.5 Conclusion

We study the problem of inferring social relations in collaboration networks,
formulated as a semi-supervised learning problem on graphs where edges have
multiple labels. Observing that edges in collaboration networks represent the
shared interests of two people, we transform edge labels to node labels and
perform label propagation to deal with the label sparsity problem. Experi-
mental results on real-world collaboration networks show the superiority of
our method in terms of both accuracy and efficiency.

It is interesting to see a straightforward approach like our work archive
state-of-the-art performance. We hypothesize that this is due to the type
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of data represented in the social network where attributes are implicitly as-
sociate also with nodes besides edges, which benefits our propagation-based
approach centered at aggregated attributes on nodes. The future work calls
for exploring principled indicator that characterizes a class of datasets that
can benefit from this simple approach, as well as theoretical analysis of the
advantages brought by our approaches. Furthermore, we would also like to
investigate proper approaches to handle datasets that this work may not be
ideal for, such as ones where relations are not strongly associate with nodes.
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4 Towards the High-quality Anime Charac-
ters Generation with Generative Adversar-
ial Networks 8

4.1 Introduction

The automatic generation of anime characters offers an opportunity to bring
a custom character into existence without professional skill. Besides, profes-
sionals may also take advantages of the automatic generation for inspiration
on animation and game character design. However results from existing mod-
els [106, 127, 145, 92] on anime image generation are blurred and distorted
on a non-trivial frequency, thus generating industry-standard facial images
for anime characters remains a challenge. In this paper, we propose a model
that produces anime faces at high quality with a promising rate of success
with three-fold contributions: A clean dataset from Getchu, a suitable DRA-
GAN [82]-based SRResNet [91]-like GAN model and our general approach to
training a conditional model from images with estimated tags as conditions.
We also make available a publicly accessible web interface.

Our contribution is best highlighted using high-quality high-resolution
(256 by 256) images sampled generated from our model:
Randomly Generated Examples: Figure 4.1 shows images generated
from our model where both noise and attributes are randomly sampled.
Generated Examples with Fixed Noise: In Figure 4.2 we show that by
fixing the random noise part and sampling random attribution, the model
generates images that have similar major visual features like face shapes and
directions, evidence of the generalization ability.
Generated Examples with Fixed attribution: In Figure 4.3 we show
generated images from fixed attribution and randomly noise. The model here
generates images with desired attributions but with different, variant visual
features.
Interpolation between images: In Figure 4.4 we show the interpolation
between two sets of randomly selected features. It shows that attributes, like
noise, are meaningful under the continuous setting.

8The content of this section is taken from:
[75] Yanghua Jin, Jiakai Zhang, Minjun Li, Yingtao Tian, Huachun Zhu, and Zhihao Fang.
Towards the automatic anime characters creation with generative adversarial networks.
CoRR, abs/1708.05509, 2017
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Details of protocol and more examples can be found in Section 4.4.

Figure 4.3: Generated images with fixed conditions (silver hair, long hair,
blush, smile, open mouth, blue eyes) and random noise part.

4.2 Dataset Construction

We propose to use a consistent, clean, high-quality anime dataset collected
from Getchu, a website for Japanese games. We describe the process in detail
in Section 4.2.1). The generation of images with customization requires cat-
egorical metadata of images in priors as attributes along with noise. Since
Getchu does not provide such metadata, we use Illustration2Vec [132], a
CNN-based tool for anime illustrations that serves as attribute estimation.
We show the details of attribute estimation with its statistics and visualiza-
tion in Section 4.2.2.
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Figure 4.4: Interpolation between images.

4.2.1 Image Collection

Getchu? is a website providing information and selling of Japanese games,
for which there are character introduction sections with standing pictures.
Figure 4.5 shows one sample character introduction from the site. These im-
ages are diverse enough since illustrators create them with different styles for
games in a diverse set of themes, yet consisting since they are all belonging to
the domain of character images, are in decent quality, and are appropriately
clipped/aligned due to the nature of illustration purpose. Because of these
properties, they are suitable for our task.

Then we download images and apply animeface '°, an anime character
face detector, to each image and get the bounding box for faces and land-
marks for facial features such as mouth and eyes.

We observe that using estimated bounding box suffers from the fact that
many faces are too close to capture complete character attributes, and are
often rotated such that they are not well-aligned vertically or horizontally.
To tackle this issue, inspired by preprocessing in [77] we estimate a more
reliable, possibly rotated, face frame from the facial landmarks. In detail,
our inference of face frame from facial landmarks is the following:

10

Ywww.getchu.com

Ohttps://github.com /nagadomi/animeface-2009
1 Getchu page with standing picture (http://www.getchu.com/soft.phtmI?id=933144).
Copyright: Frontwing, 2017.
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Figure 4.5: Example of Image processing using face frame detection and
rotation. The original image of standing picture on the left'’, and detected
face frame on the right shown with rotation applied. The green and red lines

indicate the face frame and based on the landmarks of two eyes and mouth
indicated by the blue “T”-shape.

¥ =e — e

1
ec—§(€0+61)
y’:ec_m

c=e.+ 0.4y

s = max (4.0 - [2'[,5.2 - |¢/|)
x = Normalize (2" — Rotate90 ("))
y = Rotate90 (x)

where ey, e; and m represent the 2-d pixel location of two eyes and mouth,
respectively. ¢ and s are for center and size of the face frame, and z, y
indicate the orientation of the frame. We pad white pixels to extend the size
of images when the frame may include regions outside the original image. this
pipeline is illustrated in Figure 4.5, and use faces defined by these frames as
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dataset.

Finally, from 42000 face images in total inferred from face frames, we
manually check all anime face images and remove about 4% false positive
and undesired images.

4.2.2 Tag Estimation

blonde hair brown hair black hair  blue hair ~ pink hair  purple hair  green hair

4991 6659 4842 3289 2486 2972 1115
red hair silver hair ~ white hair orange hair aqua hair  gray hair long hair
2417 987 573 699 168 57 16562
short hair twintails drill hair ponytail blush smile open mouth
1403 5360 1683 8861 4926 5583 4192
hat ribbon glasses blue eyes red eyes  brown eyes  green eyes

1403 5360 1683 8861 4926 5583 4192

purple eyes yellow eyes pink eyes aqua eyes black eyes orange eyes
4442 1700 319 193 990 49

Table 4.1: Number of dataset images for each tag

To overcome the limitation that images collected from Getchu are with-
out any tag, we use Illustration2Vec [132], a pre-trained'? CNN-based tool
for estimating tags of anime illustrations. Given an anime image, this net-
work can predict probabilities of belonging to 512 kinds of general attributes
(tags) such as “smile” and “weapon”, among which we select 34 related tags
suitable for our task. We show the selected tags and the number of dataset
images corresponded to each estimated tag in Table 4.1. For the set of tags
with mutual exclusivity (e.g., hair color, eye color), we choose the one with
maximum probability from the network as the estimated tag. For orthogonal
tags (e.g. “smile”, “open mouth”, “blush”), we use 0.25 as the threshold and
estimate each attribute’s presence independently.

We would like to show the image preparation and the performance of tag
estimation through visualization. As an approximation, we apply the Illus-
tration2Vec feature extractor, which largely shares architecture and weights
with Illustration2Vec tag estimator, on each image for a 4096-dimension fea-
ture vector, and project feature vectors onto a 2D space using t-SNE[105].

12Pre-trained model available on http://illustration2vec.net/
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Figure 4.6: t-SNE visualization of 1500 dataset images. A clustering in terms
of similar attributes can be observed in close-up views.

Figure 4.6 shows the t-SNE result of 1500 images sampled from the dataset.
We observe that character images with similar visual attributes are placed
closely. Due to the shared weights, we believe this also indicates the good
performance in tag estimator.

4.3 Generative Model

Generative Adversarial Networks proposed by Goodfellow et at.[55] are im-
plicit generative models. It proves to be an effective and efficient way to
generate highly photo-realistic images in an unsupervised and likelihood-free
manner[122]. GAN uses a generator network G to generate samples from
Pg. This is done by transforming a latent noise variable z ~ P, into a
sample G(z). The original GAN uses a min-max game strategy to train the
generator G, imposing another network D to distinguish samples from G and
real samples. Formally, the objective of GAN can be expressed as

mén mgXE(D’ G) = IE-TNPdata []'Og D(x)] + Exwpnoise [10g<1 - D(G(Z>))] ‘

In this formula, the discriminator D try to maximize the output confidence
score from real samples. Meanwhile, it also minimizes the output confidence
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score from fake samples generated by G. In contrast, G aims to maximize
the D evaluated score for its outputs, which can be viewed as deceiving D.

Despite the impressive results of GAN, it is notoriously hard to train
GAN properly. [6] showed the Pg and P, might have non-overlap sup-
ports, so the Jensen-Shannon Divergence in the original GAN objective is
constantly 0, which leads to instability. [8] argued that there might ex-
ist no equilibrium in the game between generator and discriminator. One
possible remedy is to use integral probability metric(IPM) based methods
instead, e.g. Wasserstein distance[7], Kernel MMD[94], Cramer distance[13].
Some recent GAN variants suggest using gradient penalty to stabilize GAN
training[59, 13, 130, 82]. Mattya[107] compared several recent GAN variants
under the same network architecture and measures their performance under
the same metric.

Here, we use DRAGAN proposed by [82] as the basic GAN model. As
[107] shows, DRAGAN can give presumable results compare to other GANS,
and it has the least computation cost among those GAN variants. Compare
with Wasserstein GAN and its variants, DRAGAN can be trained under the
simultaneous gradient descent setting, which makes the training much faster.
In our experiments, we also find it is very stable under several network archi-
tectures, and we successfully train the DRAGAN with an SRResNet [91]-like
generator, Incorporating label information is important in our task to pro-
vide the user a way to control the generator. Inspired by ACGAN [118], we
utilize the attributions by feeding them along with noise vector and add a
multi-label classifier on the top of the discriminator for reconstructing the
attributions.

In the rest of this section, we describe the network architecture, loss
function, and training details.

Generator Network 16 Residual blocks

| k3nB4s1  k3n6dsl 1 k3n64sL k3n256s1 k9n3s1

Output(3#128+128)

Input(128+34)
Dense(64*16*16)

Figure 4.7: Generator Architecture
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Discriminator Network

|| oemeta |

Dense(1)

k4n32s2  k3n32s1 k3n32s1 k3n3251k3n32s1 k4n64s2  k3n64s1*4 k4n128s2 K3n128s1*4 k3n256s1%4 k3n51251*4

) ) k325652 k3nslzsz  K3ni024s2

Figure 4.8: Discriminator Architecture

Network Architecture The generator’s architecture is shown in Figure
4.7, which is a modification from SRResNet [91]. The model contains 16
ResBlocks and uses 3 sub-pixel CNN [135] for feature map upscaling. Figure
4.8 shows the discriminator architecture, which contains 10 ResBlocks in
total. All batch normalization layers are removed in the discriminator since
it would bring correlations within the mini-batch, which is undesired for the
computation of the gradient norm. We add an extra fully-connected layer to
the last convolution layer as the attribute classifier. All weights are initialized
from a Gaussian distribution with mean 0 and standard deviation 0.02.

Loss Function The loss function is described as following:

(D)
(D)

(D) = Einpyerrumseagora [V D(@)]]2 = 1)7]
ado (G) = By pioc enPona[108(D(G (2, €)))]
(@) g(Pplc|G(z,c)])]

( ) = 'CclS(D) "" AadvLado(D) + )‘gp‘cgp<D)
(@)
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Q
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where P, indicates the prior distribution of assigned tags. Mgy, Agp are
balance factors for the adversarial loss and gradient penalty respectively.

Training details We find that the model achieves the best performance
with Mgy equaling to the number of attributes, a detailed analysis [172] of the
gradient in the condition of ACGAN shows. Here, we set Ayq, to 34 and Ay,
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Figure 4.9: Generated samples with random noise and attributes.

to 0.5 in all experiments. All models are optimized using Adam optimizer[78§]
with ; equaling 0.5. We use a batch size of 64 in the training procedure.
The learning rate is initialized to 0.0002 and exponentially decreases after
50000 iterations of training. We train our GAN model using only images from
games released after 2005 and with scaling all training images to a resolution
of 128 by 128 pixels. This gives 31255 training images in total. We use the
following simple strategy to sample related attributes for the noise. For the
categorical attributes (e.g., hair and the eye color), we randomly select one
possible color with uniform distribution. For other attributes, we set each
label independently with a probability of 0.25.

4.4 Qualitative Evaluation

Figure 4.9 shows more images generated from our model. Figure 4.10 is
an example of fixing the random noise part and sampling random attributes,
where the model can generate images that have similar major visual features.
In sampling random attributes, we use the following simple strategy: For the
categorical attributes (hair and the eye color), we randomly select one possi-
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Figure 4.10: Generated images with fixed noise and random attributes.

ble attribute uniformly. For other attributes, we set each label independently
with a probability of 0.25.

We empirically observe that the random noise part heavily inference the
quality of the final result. Some noise vector can give good samples no matter
what conditioned on, while some other noise vectors are easier to produce
distorted images. As Table 4.1 states, labels are not evenly distributed in
our training dataset, which results that some combinations of attributes can-
not give good images. In Figure 4.11, (a)(b) are generated with well-learned
attributes like “blonde hair”, “blue eyes”. In contrast, (c¢) and (d) are as-
sociated with “glasses”, “drill hair”, which is not well learned because of
the insufficiency of corresponding training images. All characters in (a)(b)
appear to be attractive, but most characters in (c)(d) are distorted.

We also show more interpolations in Figure 4.12. Although label control-
ling variables are assigned with discrete values in the training stage, the result
shows that those discrete attributes are still meaningful under the continuous
setting.
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Figure 4.11: Generated images with random noise and following fixed at-
tributes: (a) blonde hair, twintails, blush, smile, ribbon, red eyes (b) silver
hair, long hair, blush, smile, open mouth, blue eyes (¢) aqua hair, long hair,
drill hair, open mouth, glasses, aqua eyes (d) orange hair, ponytail, hat,
glasses, red eyes, orange eyes

4.5 Quantitative Evaluation

For quantitively evaluating our generate examples, we conduct attribute
precision (Section 4.5.1), FID evaluation (Section 4.5.2) and nearest train-
ing examples (Section 4.5.3) that shows the superiority of our model over
DCGAN [122] baseline.

4.5.1 Attribute Precision

To evaluate how each tag affects the output result, we measure the precision
of the output result when the certain label is assigned. With each target,
we fix the target label to true, and sample other labels in random. For each
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Figure 4.12: Interpolations where samples in the first column and the last
columns are randomly generated under different combinations of conditions
and samples between them are result of interpolated latent points.

blonde hair brown hair black hair  blue hair ~ pink hair  purple hair  green hair

1.00 1.00 1.00 0.70 0.80 0.75 0.90
red hair silver hair ~ white hair orange hair aqua hair  gray hair long hair
0.95 0.85 0.60 0.65 1.00 0.35 1.00
short hair twintails drill hair ponytail blush smile open mouth
1.00 0.60 0.20 0.45 1.00 0.95 0.95
hat ribbon glasses blue eyes red eyes  brown eyes  green eyes

0.15 0.85 0.45 1.00 1.00 1.00 1.00

purple eyes yellow eyes pink eyes  aqua eyes  black eyes orange eyes
0.95 1.00 0.60 1.00 0.80 0.85

Table 4.2: Precision of each label.

label, 20 images are drawn from the generator. Then we manually check
generated results and judge whether output images behave the fixed attribute
we assigned. Table 4.2 shows the evaluation result. From the table, we can see
that compared with shape attributes(e.g. “hat”, “glasses”), color attributes
are easier to learn. Notice that the boundary between similar colors like
“white hair”, “silver hair”, “gray hair ” is not clear enough. Sometimes
people may have troubles to classify those confusing colors. This phenomenon
leads to low precision scores for those attributes in our test.

Surprisingly, some rare color attributes like “orange eyes”, “aqua hair”,

50



“aqua eyes” have a relative high precisions even though samples containing
those attributes are less than 1% in the training dataset. We believe visual
concepts related to colors are simple enough for the generator to get well
learned with a minimal number of training samples.

In contrast, complex attribute like “hat”, “glasses”, “drill hair” are worst
behaved attributes in our experiments. When conditioned on those labels,
generated images are often distorted and difficult to identify. Although there
are about 5% training samples assigned with those attributes, the compli-
cated visual concept they implied are far more accessible for the generator
to get well learned.

4.5.2 FID Evaluation

One quantitative evaluation method for GAN model is Fréchet Inception Dis-
tance (FID) [62]. To calculate the FID, a pre-trained CNN(Inception model)
is used to extract vision-relevant features from both real and fake samples.
The real feature distribution and the fake feature distribution are approxi-
mated with two Gaussian distributions. Then, Fréchet distance(Wasserstein-
2 distance) is calculated between two distributions and serve the results as a
measurement of the model quality.

The Inception model trained on ImageNet is not suitable for extracting
features of anime-style illustrations, since there is no such images in the orig-
inal training dataset. Here, we replace Inception model with Illustration2vec
feature extractor model for better measurement of visual similarities between
generated images and real images.

Model Average FID MaxFID-MinFID
DCGAN Generator+DRAGAN 5974.96 85.63
Our Model 4607.56 122.96

Table 4.3: FID of our model and baseline model

To evaluate the FID score for our model, we sample 12800 images from
real dataset, then generate a fake sample by using the corresponding con-
ditions for each samples real images. After that we feed all images to the
[lustation2vec feature extractor and get a 4096-dimension feature vector for
each image. FID is calculated between the collection of feature vectors from
real samples and that from fake samples.
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For each model, we repeat this process for 5 times and measure the aver-
age score of 5 FID calculation trails. Table 4.3 shows the result comparing
our model with the baseline model. We observe that our model can achieve
better FID performance evenly with less weight parameters.

4.5.3 Nearest Image in Training Set

Figure 4.13: Generated images and their nearest image in training set. In
each row, on the left we show a randomly generated images, and on the right
we show a list of its nearest images in the training set, measured by decreasing
L2 distance on features from Illustration2Vec feature extractor. Our model
learns to incorporate abstract concepts in terms of attributes (hair style, hair
color, etc.) into new, unseen visual features (facial expressions, etc.)

We would like to know whether our model learns to cheat by generating
images in the training set. In Figure 4.13 we show randomly generated
examples and their nearest images in training set. It can be shown that
our model learns to produce images with new visual features unseen in the
training set, while incorporating the abstract concepts in terms of attributes.
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4.5.4 Evolution of Anime Characters

As an extra experiment, we add the releasing year information as another
attribute to the model. Since the main stream of popular anime character
styles is continuous evolving, adding year label can help the model catch the
prevalent style in each year, as shown in Figure 4.14. Predicting the future of
anime character styles is also possible by adjusting the corresponding input
value. We made two videos!? for better demonstrating the result.

e, M;—z Mo

//)b\ AN ’/)’ﬂ/ \

Figure 4.14: Modeling the main stream of popular anime character styles
with year label. The leftmost column indicates generated images conditioned
on year 2003, and the rightmost column indicates generated images condi-
tioned on year 2017.

Bhttps://youtu.be/ WR8XnX6W8Bk and https://youtu.be/dCIVF_X5PMU

53



4.6 Public Accessible Interface

We impose WebDNN' and convert the trained Chainer model to the We-
bAssembly based Javascript model. WebGL and WebGPU based computa-
tion models are also accessible when clients meet requirements. We observe
that the inference procedure can be more than 100 times faster by enabling
GPU acceleration. The web application is built with React.js.

Keeping the size of generator model small would be a great benefit when
hosting a web browser based deep learning service. This is because user are
required to download the model before the computation every time, bigger
model results much more downloading time which will affect the user expe-
rience. Replacing the DCGAN generator by SRResNet generator can make
the model 4x smaller, so the model downloading time can be reduced by a
large margin.

We details the running time in Table 4.4. From which we believe that the
our support for multiple client-side browsers generally results in acceptable
running time and allows smooth user experience, while we also make use of
state-of-the-art technology (WebGPU) when it is applicable as a proof-of-
concept for next-generation user experience.

Processor Operation System Web Browser Execution Time (s)
17-6700HQ macOS Sierra Chrome 59.0 5.55
17-6700HQ macOS Sierra Safari 10.1 5.60
15-5250U macOS Sierra Chrome 60.0 7.86
15-5250U macOS Sierra Safari 10.1 8.68
15-5250U macOS Sierra Firefox 34 6.01
Intel HD Graphics 6000 macOS Sierra Safari 11.0(WebGPU) i0.10
Intel HD Graphics 6000  macOS Sierra ~ Chrome 60.0 (WebGL) 0.42
13-3320 Ubuntu 16.04 Chromium 59.0 53.61
13-3320 Ubuntu 16.04 Firefox 54.0 4.36
iPhone 7 Plus iOS 10 Chrome 4.82
iPhone 7 Plus iOS 10 Safari 3.33
iPhone 6s Plus iOS 10 Chrome 6.47
iPhone 6s Plus iOS 10 Safari 6.23
iPhone 6 Plus iOS 10 Safari 11.55

Table 4.4: Approximate inference time on several different environments.

https://mil-tokyo.github.io/webdnn/
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4.7 Improved Training of MakeGirlsMoe

In this section, we briefly describe our effort on improving previous MakeGirlsMoe
model by imposing the progressive growing training[77].

4.7.1 Data Preprocessing

As all dataset images have relative low resolution, we first apply the waifu2x[116]
super resolution filter to make all dataset images two times larger. Followed
by animeface landmark estimation described in Section 4.2.1, we are able to
restore the rotation of dataset images and align all anime faces to the sample
place.

8 Residual blocks
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Figure 4.15: Generator architecture for progressive growing training.

4.7.2 Model Description

e Figure 4.15 shows our modified generator architecture. In the training
procedure, we first train a 32x32 model, as we believe this is the mini-
mum resolution for clearly identifying facial attributes. Following [77],
we then move on to higher resolution models stage by stage.

e An important modification is that we replace the sub-pixel CNN with
nearest neighborhood upsampling followed by a convolutional layer in
the new model. [1] showed sub-pixel CNN suffers the checkerboard
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artifacts caused by random weight initialization, we have confirmed
those artifacts in high-resolution GAN training. In [1], they proposed
a carefully initialization strategy for tackling the problem, however, the
strategy only works for some stable loss functions like mean square loss,
which means unacceptable for training a GAN model.

e We also confirm that keeping a running average of generator parameters
is critical for a better model(which also called smoothed generator in
[77]). This can be viewed as an ensemble of multiple generators.

4.7.3 Generated Results

We show generated results here, the model is already deployed as ” Camellia”
on our website.

Figure 4.16: Result with random sampled prior.
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4.8 Conclusion

This work of anime face generation with high quality opens the door to
community-driven creation powered by deep generative methods. Several
following up research directions exist.

First and most straightforward, it is interesting to see works going beyond
this works limitation of generating face images. For example, the follow-up
advance in this direction shows is the feasible generation of full body anime
characters [60].

Second, our work shows a certain degree of customization can be feasi-
bly materialized for one user to create artwork according to his/her liking.
Therefore it calls for future works to enable finer control-ability of and inter-
activity between the users, thus improve the quality of robust and coherent
character design.
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5 Learning to Represent Bilingual Dictionar-
ies 1°
5.1 Introduction

Bilingual word embedding models are used to capture the cross-lingual se-
mantic relatedness of words based on their co-occurrence in parallel or seed-
lexicon corpora [25, 56, 104]. By collocating related words in the low-
dimensional embedding spaces, these models effectively support the repre-
sentations of lexical semantics with precise cross-lingual semantic transfer
[56]. Therefore, they have been widely used in many cross-lingual NLP tasks
including machine translation [42], bilingual document classification [171],
knowledge alignment [28] and named entity recognition [53].

While many approaches have been proposed to capture cross-lingual lex-
ical similarity, modeling the correspondence between lexical and sentential
semantics across different languages still represents an unresolved challenge.
We argue that modeling such cross-lingual and multi-granular correspon-
dence is significant and natural for the following reasons. First, it is highly
beneficial to many application scenarios, including cross-lingual semantic
search of concepts [148], agents for detecting discourse relations in bilingual
dialogue utterances [73], and multilingual text summarization [117], as well
as educational applications for foreign language learners. Second, it is natural
for a human to learn the meaning of a foreign word by looking up its meaning
in the native language. Therefore, learning such correspondence mimics hu-
man learning behaviors. Finally, learning word-to-word correspondence can
be problematic, since there are words without direct translation in another
language. For example, schadenfreude in German, which means a feeling of
joy that comes from knowing the troubles of other people, has no proper En-
glish counterpart word. To appropriately learn the representations of such
words in bilingual embeddings, we need to capture their meanings based
on the definitions as well. However, realizing such a model is a non-trivial
task, inasmuch as it requires a comprehensive learning process to effectively
compose the semantics of arbitrary-length sentences in one language, and
associate that with single words in another language. Consequently, this

15The content of this section is taken from:
[115] Muhao Chen* and Yingtao Tian* , Haochen Chen, Kai-Wei Chang, Steven Skiena,
and Carlo Zaniolo. Learning to represent bilingual dictionaries. In Submitted, 2019
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objective also demands high-quality cross-lingual alignment that bridges be-
tween single and sequences of words. Such alignment information is generally
not available in the parallel and seed-lexicon corpora that are utilized by
bilingual word embedding models [56, 86].

To incorporate the representations of bilingual lexical and sentential se-
mantics, we propose an approach by leveraging bilingual dictionaries *¢. The
proposed approach BilDRL (Bilingual Dictionary Representation Learning)
seeks to capture the mapping from word definitions to the corresponding
words in another language. BilDRL first constructs a word embedding space
with pre-trained bilingual word embeddings. By utilizing cross-lingual word
definitions, a sentence encoder is trained to realize the mapping from literal
descriptions to target words in the bilingual word embedding space, for which
we investigate with multiple encoding techniques. To enhance cross-lingual
learning on limited resources, BilDRL conducts multi-task learning on dif-
ferent directions of language pairs. Moreover, we enforce a joint learning
strategy of bilingual word embeddings and the sentence encoder, which seeks
to gradually adjust the embedding space to better suit the representation of
cross-lingual word definitions.

To show the applicability of BilDRL, we conduct experimental evalua-
tion on two useful cross-lingual tasks (see Fig. 5.1). (i) Cross-lingual reverse
dictionary retrieval seeks to retrieve words or concepts given descriptions in
another language. This task is useful to help users find foreign words based
on the notions or descriptions, and is especially beneficial to users such as
translators, foreigner language learners and technical writers using non-native
languages. We show that BilDRL achieves promising results on this task,
while bilingual multi-task learning and joint learning dramatically enhance
the performance. (ii) Bilingual paraphrase identification asks whether two
sentences in different languages essentially express the same meaning, which
is critical to question answering or dialogue systems that apprehend mul-
tilingual utterances [12]. This task is challenging, as it requires a model
to comprehend cross-lingual paraphrases that are inconsistent in grammar,
content details and word orders. BilDRL maps sentences to the lexicon
embedding space. This process reduces the problem to evaluate the similar-
ity of lexicon embeddings, which can be easily solved by a simple classifier.

16We refer the term dictionary to its regular meaning, i.e. lexicographic definitions of
words. Note that this is different from many recent papers on bilingual settings that refer
dictionaries to seed lexicons, e.g. one-to-one word mapping.
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A male descendent in relation to his parents. g — FI lSFR

Cross-lingual Reverse

I Cross-lingual Paraphrases Dictionary Retrieval

Tout étre humain du sexe masculin considéré
par rapport a son pére et a sa mére, ou a un des | E——)p SOI‘\EN
deux seulement. R

Figure 5.1: An example illustrating the two cross-lingual tasks. The cross-
lingual reverse dictionary retrieval finds cross-lingual target words based
on descriptions. In terms of cross-lingual paraphrases, the French sentence
(which means any male being considered in relation to his father and mother,
or only one of them) essentially describes the same meaning as the English
sentence, but has much more content details.

BilDRL performs well with even a small amount of data, and significantly
outperforms previous approaches.

5.2 Related Work

In this section, We discuss two lines of work that are relevant to our topic.
Bilingual word embeddings. Recently, various approaches have been
proposed for training bilingual word embeddings. These approaches span
in two families: off-line mappings and joint training.

The off-line mapping-based approach fixes the structures of pre-trained
monolingual word embeddings, and induces bilingual projections based on
seed-lexicon alignment [108]. Some variants of this approach improve the
quality of bilingual projections by adding constraints such as orthogonality
of transforms, normalization and mean centering of embeddings [164, 9.
Others adopt canonical correlation analysis to map separated monolingual
embeddings to a shared embedding space [52, 103].

Unlike off-line mappings, joint training models simultaneously update
word embeddings and cross-lingual alignment. In doing so, such approaches
generally capture more precise cross-lingual semantic transfer [150]. While
few of such models still maintain separated embedding spaces for each lan-
guage [67], more recent ones obtain a unified space for both languages. The
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cross-lingual semantic transfer by these models is captured from parallel cor-
pora with sentential or document-level alignment, using techniques such as
bilingual bag-of-words distances (BiIBOWA) [56], Skip-Gram [35] and sparse
tensor factorization [153].

Neural sentence modeling. Neural sentence models seek to characterize
the phrasal or sentential semantics from word sequences. They often adopt
encoding techniques such as recurrent neural encoders (RNN) [80], convolu-
tional neural encoders (CNN) [27], and attentive encoders [129] to represent
the composed semantics of a sentence as an embedding vector. Recent works
have focused on apprehending pairwise correspondence of sentential seman-
tics by adopting multiple neural sentence models in one learning architecture,
including Siamese models for detecting discourse relations of paraphrases
or text entailment [133], sequence-to-sequence models for tasks like style
transfer [134] and text summarization [32]. While our work is related to
corresponding works of neural machine translation (NMT) [11, 161], our set-
ting has major differences from NMT in the following two perspectives: (i)
NMT has to bridge between corpora of the same granularity, unlike BilDRL
that captures the multi-granular correspondence of semantics across differ-
ent modalities; (ii) NMT relies on training an encoder-decoder architecture,
while BilDRL employs joint learning of two representation models, i.e. a
dictionary-based sentence encoder and a word embedding model.

On the other hand, fewer efforts have been put to characterizing the
associations between sentential and lexical semantics. [64] and [72] learn
off-line mappings between monolingual descriptions and lexicons to capture
such associations. [46] adopt a similar approach to capture emojis based
on descriptions. At the best of our knowledge, there has been no previous
approach that learn to discover the correspondence of sentential and lexical
semantics in a multilingual scenario. This is exactly the focus of our work,
in which the proposed strategies of multi-task and joint learning are criti-
cal to the corresponding learning process under limited resources. Utilizing
such correspondence, our approach also sheds light on addressing discourse
relation detection in a multilingual scenario.

5.3 Modeling Bilingual Dictionaries

We hereby begin our modeling with the formalization of bilingual dictionar-
ies. We use L to denote the set of languages. For a language | € L, V]
denotes its vocabulary, where for each word w € Vj, bold-faced w € R*
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Dictionary Model Bilingual BiIIBOWA Model English/French Monolingual Skip-Gram Model
L Neighbor /.,

Description g, — - Sentence gygisn -~ Word ;,,g/,-s,, - = X Other ¢,
1]ttt 1] atun s
R R R 13§, Neighbor ..,
Target 7oy, — Sentence £, - Word ., ~HHE <= X Other French
* amale descendentin " fils *the cat sat on the mat *mat  *the cat sat on the
relation to his parents Ale chat sest assis sur le tapis Mtapis  $le chat s’est assis sur le
Joint Objective Function = LYY rp + A, (L35 + L§S) + 2,08y rr | Legend [ I B .
The same color indicates shared parameters. Embedding Encoder Average Classifier

Figure 5.2: Joint learning architecture of BilDRL.

denotes its embedding vector. A [;-l; bilingual dictionary D(l;,[;) (or sim-
ply D;;) contains dictionary entries (w’, SJ) € D;;, in which w® € V},, and
Si = w]...wl (w € V,) is a cross-lingual word definition that describes
the word w*® with a sequence of words in language [;. For example, a
French-English dictionary D(Fr,En) could include a French word appétite
accompanied by its English definition desire for, or relish of food or drink.
Note that, for a word w’, multiple definitions in /; may coexist.

BilDRL is constructed and improved through three stages, as depicted
in Fig. 5.2. A sentence encoder is first used to learn from a bilingual dictio-
nary the association between words and definitions. Then in a pre-trained
bilingual word embedding space, multi-task learning is conducted on both
directions of a language pair. Lastly, joint learning with word embeddings is
enforced to simultaneously adjust the embedding space during the training
of the dictionary model, which further enhances the cross-lingual learning
process.

5.3.1 Encoders for Bilingual Dictionaries

BilDRL models a dictionary using a neural sentence encoder E(S), which
composes the meaning of the sentence into a latent vector representation.
We hereby introduce this model component, which is designed to be a GRU
encoder with self-attention. Besides that, we also investigate other widely-
used neural sentence modeling techniques.

Attentive GRU Encoder The GRU encoder is a computationally effi-
cient alternative of the LSTM [31]. Each unit consists of a reset gate r; and
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an update gate z; to track the state of the sequence. Given the vector repre-
sentation w; of an incoming item w,;, GRU updates the hidden state hgl as
a linear combination of the previous state h§1_)1 and the candidate state flﬁ”
of the new item w; as below.

hgl) =7 © flgl) + (1 — Zt) ® hgi)l

The update gate z; balances between the information of the previous
sequence and the new item, where M, and N, are two weight matrices, b,
is a bias vector, and ¢ is the sigmoid function.

2, =0 (szt +N.hY, + bz>

The candidate state Bﬁ” is calculated similarly to those in a traditional
recurrent unit as below.

flgl) = tanh (MSWt +r.© (Nshgl—)l) ™ bs)

The reset gate r; thereof controls how much information of the past se-
quence should contribute to the candidate state:

r=o (Mrwt +N,hY, + b,,)

The above defines a GRU layer which outputs a sequence of latent vectors
given an input sequence S. While a GRU encoder can stack multiple GRU
layers, without an attention mechanism, the last hidden state hg) of the last
layer is used to represent the overall meaning of the encoded sentence.
Self-attention. The self-attention mechanism [34] seeks to highlight the
important units in an input sentence when capturing its overall meaning,
which is calculated as below:

u, = tanh <Mah§1) + ba>

exp (u ug)
ZmeS exXp (u;LuS>

th) = ]S‘atut

Ay =

u; thereof is the intermediary representation of GRU output hgl), and ug =

tanh(Mahg) +b,) is that of the last GRU output hg), which can be seen as
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a high-level representation of the entire input sequence. By measuring the
similarity of each u; with ug, the normalized attention weight a; is produced
through a softmax function, which highlights an input that contributes more
significantly to the overall meaning. Note that a scalar |:S| is multiplied along
with a; to u; to obtain the weighted representation h§2), so as to keep h§2)
from losing the original scale of h,gl). The sentence encoding is calculated as
the average of the last attention layer £ (S) = ﬁ thﬂl athgz).

Other Encoders We also experiment with other widely used neural sen-
tence modeling techniques, which are however outperformed by the attentive
GRU encoder in our tasks. These techniques include the vanilla GRU, CNN
[76], and linear bag-of-words (BOW) [64]. We briefly introduce the later two
techniques in the following.

Convolutional Encoder. A convolutional encoder applies a kernel M, €
R"* to produce the latent representation hig) = tanh(M w151 + be)
from each h-gram of the input vector sequence wy.;.,_1, for which h is the
kernel size and b, is a bias vector. A sequence of latent vectors H® =
[h§3), h§3), s hf;’)‘_h 1) is produced from the input, where each latent vector
leverages the significant local semantic features from each h-gram. Following
convention [98], we apply dynamic max-pooling to extract robust features
from the convolution outputs, and use the mean-pooling results of the last
layer to represent the sentential semantics.

Linear bag-of-words. The much simpler BOW encoder [72, 64] is real-
ized by the sum of projected word embeddings of the input sentence, i.e.

E@(8) =¥ Myw,.

5.3.2 Basic Learning Objective

The objective of learning the dictionary model is to map the encodings of
cross-lingual word definitions to the target word embeddings. This is realized
by minimizing the following L loss,

1 ; 12
ST _ (GTY) — it
g ol LICTEN
(w?,8%)€Di;
in which Ej; is the dictionary model that maps from descriptions in [; to
words in ;.
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The above defines the basic model variants of BilDRL that learns on a
single dictionary. For word representations in the learning process, BilDRL
initializes the embedding space using pre-trained word embeddings. Note
that, without adopting the joint learning strategy in Section 5.3.4, the learn-
ing process does not update word embeddings that are used to represent the
definitions and target words. While other forms of loss such as cosine prox-
imity [64] and hinge loss [72] may also be used in the learning process, we
find that L loss consistently leads to better performance in our experiments.

5.3.3 Bilingual Multi-task Learning

In cases where entries in a bilingual dictionary are not amply provided, learn-
ing the above bilingual dictionary on one ordered language pair may fall short
in insufficiency of alignment information. One practical solution is to con-
duct a bilingual multi-task learning process. In detail, given a language pair
(1;,1;), we learn the dictionary model E;; on both dictionaries D;; and Dj;
with shared parameters. Correspondingly, we rewrite the previous learning
objective function as below, in which D = D;; U Dj;.

1
Lyt = D] > IEG(Sw) — Wl
(w,Sw)eD

This strategy non-trivially requests the same dictionary model to repre-
sent semantic transfer in two directions of the language pair. To fulfill such
a request, we initialize the embedding space using the bilingual BiIBOWA
embeddings trained on parallel corpora, which provides a unified embedding
space that resolves both monolingual and cross-lingual semantic relatedness
of words. In practice, we find that this simple multi-task strategy brings
significant improvement to our cross-lingual tasks. Note that, besides Bil-
BOWA, other jointly trained bilingual word embeddings [35, 153] may also
be used to support this strategy, for which we leave the comparison to future
work.

5.3.4 Joint Learning

While above learning strategies of BilDRL are based on a fixed embedding
space, we lastly propose a joint learning strategy. During the training process,
this strategy simultaneously updates the embedding space based on both the
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dictionary model and the bilingual word embedding model. The learning is
through asynchronous minimization of the following joint objective function,

J = LT 4+ M (LYY + L39) + 20

where A\; and Ay are two positive coefficients. LiSG and LjSG are the original
Skip-Gram losses [109] employed by BilIBOWA to separately obtain word em-
beddings on monolingual corpora of languages [; and [;. Qj} is the alignment
loss to minimize the bag-of-words distances for aligned sentence pairs (S?, S7)
from the parallel corpora C;;, which is termed as below.

1 L
Qb = > ds(S, )
|Cij] (51,.57)€Cs;
2

wi, €5 wl eSi

2

The joint learning process adapts the embedding space to better suit
the dictionary model, which is shown to further enhance the cross-lingual
learning of BilDRL.

5.3.5 Training

To initialize the embedding space, we pre-trained BiIBOWA on the parallel
corpora Europarl v7 [83] and monolingual corpora of tokenized Wikipedia
dump [2]. For models without joint learning, we use AMSGrad [123] to
optimize the parameters. Each model without bilingual multi-task learn-
ing thereof, is trained on batched samples from each individual dictionary.
Multi-task learning models are trained on batched samples from two dictio-
naries. Within each batch, entries of different directions of languages can be
mixed together. For joint learning, we follow previous works [56, 112] to con-
duct an efficient multi-threaded asynchronous training [111] of AMSGrad.
In detail, after initializing the embedding space based on pre-trained Bil-
BOWA | parameter updating based on the four components of J occurs across
four worker threads. Two monolingual threads select batches of monolin-
gual contexts from the Wikipedia dump of two languages for Skip-Gram,
one alignment thread randomly samples parallel sentences from Europarl,
and one dictionary thread extracts batched samples of entries for a bilingual
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multi-task dictionary model. Each thread makes a batched update to model
parameters asynchronously for each component of J. The asynchronous
training of all threads keeps going until the dictionary thread finishes its
epochs.

5.4 Experiments

In this section, we present the experiments on two cross-lingual tasks: the
cross-lingual reverse dictionary retrieval task and the bilingual paraphrase
identification task.
Datasets. The experiment of cross-lingual reverse dictionary retrieval is
conducted on a trilingual dataset Wikt3l. This dataset is extracted from
Wiktionary!'”, which is one of the largest freely available multilingual dictio-
nary resources on the Web. Wikt3l contains dictionary entries of language
pairs (English, French) and (English, Spanish), which form En-Fr, Fr-En, En-
Es and Es-En dictionaries on four bridges of languages in total. T'wo types of
bilingual dictionary entries are extracted from Wiktionary: (i) cross-lingual
definitions provided under the Translations sections of Wiktionary pages; (ii)
monolingual definitions for words that are linked to a cross-lingual counter-
part with a inter-language link'® of Wiktionary. We exclude all the definitions
of stop words in constructing the dataset, and list the statistics in Table 5.1.
Since existing datasets for paraphrase identification are merely monolin-
gual, we contribute with another dataset WBPS3I for cross-lingual sentential
paraphrase identification. This dataset contains 6,000 pairs of bilingual sen-
tence pairs respectively for En-Fr and En-Es settings. Within each bilingual
setting, 3,000 positive cases are formed as pairs of descriptions aligned by
inter-language links, which exclude the word descriptions in Wikt3l for train-
ing BilDRL. To generate negative examples, given a source word, we first
find its 15 nearest neighbors in the embedding space. Then we randomly
pick one word from these neighbors and pair its cross-lingual definition with
the English definition of the source word to create a negative case. This
process ensures that each negative case is endowed with limited dissimilarity
of sentence meanings, which makes the decision more challenging. For each
language setting, we randomly select 70% for training, 5% for validation,
and the rest 25% for testing. Note that each language setting of this dataset

https:/ /www.wiktionary.org/
18 An inter-language link matches the entries of counterpart words between language
versions of Wiktionary.
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Dictionary ‘En—Fr Fr-En En-Es Es-En

#Target words|15,666 16,857 8,004 16,986
#Definitions |50,412 58,808 20,930 56,610

Table 5.1: Statistics of the bilingual dictionary dataset Wikt3l.

Positive Examples

En: Being remote in space.
Fr: Se trouvant a une grande distance.

En: The interdisciplinary science that applies theories and
methods of the physical sciences to questions of biology.

Es: Ciencia que emplea y desarrolla las teoras y métodos de
la fisica en la investigacion de los sistemas biolgicos.

Negative Examples

En: A person who secedes or supports secession from a
political union.

Fr: Controle politique exercé par une grande puissance sur
une contre inféodée.

En: The fear of closed, tight places.
Es: Pérdida o disminucion considerables de la memoria.

Table 5.2: Examples of bilingual paraphrases from WBP31.

thereof, matches with the quantity and partitioning of sentence pairs in the
widely-used Microsoft Research Paraphrase Corpus benchmark for monolin-
gual paraphrase identification [167, 39]. Several examples from the dataset
are shown in Table 5.2.

5.4.1 Cross-lingual Reverse Dictionary Retrieval

The objective of this task is to enable cross-lingual semantic retrieval of
words based on descriptions. Besides comparing variants of BilDRL that
adopt different sentence encoders and learning strategies, we also compare
with the monolingual retrieval approach proposed by [64]. Instead of directly
associating cross-lingual word definitions, this approach learns definition-to-
word mappings in a monolingual scenario. When it applies to the multilingual
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Languages ‘ En-Fr ‘ Fr-En ‘ En-Es ‘ Es-En
Metric ‘P@l P@10 MRR‘P@l PQ10 MRR‘P@l P@10 MRR‘P@l PQ@10 MRR

BOW 08 34 001104 22 0006)04 24 0.007]04 26 0.007
CNN 6.0 124 0.070| 6.4 148 0.072| 3.8 7.2 0.045| 7.0 16.8 0.088
GRU 35.6 46.0 0.380]38.8 49.8 0.410(47.8 59.0 0.496|57.6 67.2 0.604
ATT 38.8 474 0.411139.8 50.2 0.425|51.6 59.2 0.534|60.4 68.4 0.629

GRU-mono|21.8 33.2 0.242]27.8 37.0 0.297|34.4 41.2 0.358|36.8 47.2 0.392
ATT-mono|22.8 33.6 0.249|274 39.0 0.298|34.6 42.2 0.358(39.4 48.6 0.414

GRU-MTL |43.4 49.2 0.452|44.4 52.8 0.467|50.4 60.0 0.530({63.6 71.8 0.659
ATT-MTL |46.8 56.6 0.487|47.6 56.6 0.497|55.8 62.2 0.575|66.4 75.0 0.687

ATT-joint [63.6 69.4 0.654|68.2 75.4 0.706/69.0 72.8 0.704|78.6 83.4 0.803

Table 5.3: Cross-lingual reverse dictionary retrieval results by BilDRL vari-
ants. We report PQ1, P@10, and MRR on four groups of models: (i)
basic dictionary models that adopt four different encoding techniques (BOW,
CNN, GRU and ATT); (ii) models with the two best encoding techniques
that enforce the monolingual retrieval approach by [64] (GRU-mono and
ATT-mono); (iii) models adopting bilingual multi-task learning (GRU-MTL
and ATT-MTL); (iv) joint learning that employs the best dictionary model
of ATT-MTL (ATT-joint).

setting, given a word definition, it first retrieve the corresponding word in
the source language. Then, it looks up for semantically related words in the
target language using bilingual word embeddings.

Evaluation Protocol. Before training the models, we randomly select 500
defined words from each dictionary respectively as test cases, and exclude all
the definitions of these words from the rest training data. Each of the basic
BilDRL variants are trained on one bilingual dictionary. The monolingual
retrieval models are trained to fit the target words in the original languages of
the word definitions, which are also provided in Wiktionary. BilDRL variants
with multi-task or joint learning use both dictionaries on the same language
pair. In the test phase, for each test case (w',S%) € D;;, the prediction by
each model is to perform a kNN search from the corresponding definition
encoding E;;(S57), and record the rank of w’ within the vocabulary of I;. We
limit the vocabularies to all the words that appear in the Wikt3l dataset,
which involve around 45k English words, 44k French words and 36k Spanish
words. We aggregate three metrics on test cases: the accuracy PQ1 (%), the
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proportion of ranks no larger than 10 PQ10 (%), and mean reciprocal rank
MRR.

We pre-train BiIBOWA based on the original configuration in [56] and

obtain 50-dimensional initialization of bilingual word embedding spaces re-
spectively for the English-French and English-Spanish settings. For CNN,
GRU, and attentive GRU (ATT) encoders, we stack five of each corre-
sponding encoding layers with hidden-sizes of 200, and two affine layers
are applied to the final output for dimension reduction. This encoder ar-
chitecture consistently represents the best performance through our tuning.
Through comprehensive hyperparameter tuning, we fix the learning rate «
to 0.0005, the exponential decay rates of AMSGrad (; and S5 to 0.9 and
0.999, coefficients A\; and Ay to both 0.1, and batch size to 64. Kernel-size
and pooling-size are both set to 2 for CNN. Word definitions are zero-padded
(short ones) or truncated (long ones) to the sequence length of 15, since most
definitions (over 92%) are within 15 words in the dataset. Training is limited
to 1,000 epochs for all models as well as the dictionary thread of asynchronous
joint learning, in which all models are able to converge.
Results. Results are reported in Table 5.3 in four groups. The first group
compares four different encoding techniques for the basic dictionary models.
GRU thereof consistently outperforms CNN and BOW, since the latter two
fail to capture the important sequential information for descriptions. ATT
that weighs among the hidden states has notable improvements over GRU.
While we equip the two better encoding techniques with the monolingual
retrieval approach (GRU-mono and ATT-mono), we find that the way of
learning the dictionary models towards monolingual targets and retrieving
cross-lingual related words incurs more impreciseness to the task. For mod-
els of the third group that conduct multi-task learning in two directions of
a language pair, the results show significant enhancement of performance
in both directions. For the final group of results, we incorporate the best
variant of multi-task models into the joint learning architecture, which leads
to compelling improvement of the task on all settings. This demonstrates
that properly adapting the word embeddings in joint with the bilingual dic-
tionary model efficaciously constructs the embedding space that suits better
the representation of both bilingual lexical and sentential semantics.

In general, this experiment has identified the proper encoding techniques
of the dictionary model. The proposed strategies of multi-task and joint
learning effectively contribute to the precise characterization of the cross-
lingual correspondence of lexical and sentential semantics, which have led to
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very promising capability of cross-lingual reverse dictionary retrieval.

5.4.2 Bilingual Paraphrase Identification

The bilingual paraphrase identification problem is a binary classification task
with the goal to decide whether two sentences in different languages express
the same meanings'®. BilDRL provides an effective solution by transferring
sentential meanings to lexicon-level representations and learning a simple
classifier. We evaluate three variants of BilDRL on this task using WBP3l:
the multi-task BilDRL with GRU encoders (BilDRL-GRU-MTL), the multi-
task BiIDRL with attentive GRU encoders (BilDRL-ATT-MTL), and the
joint learning BilDRL with with attentive GRU encoders (BilDRL-ATT-
joint). We compare against several baselines of neural sentence pair models
that are proposed for monolingual paraphrase identification. These models
include Siamese structures of CNN (BiCNN) [166], RNN (BiGRU) [114],
attentive CNN (ABCNN) [167], attentive GRU (BiATT) [129], and linear
BOW (BiBOW). To support the reasoning of cross-lingual semantics, we
provide these baselines with the same BilBOWA embeddings.

Evaluation protocol. BilDRL transfers each sentence into a vector in the
word embedding space. Then, for each sentence pair in the train set, a
Multi-layer Perceptron (MLP) with a binary softmax loss is trained on the
subtraction of two vectors as a downstream classifier. Baseline models are
trained end-to-end, each of which directly uses a parallel pair of encoders
with shared parameters and an MLP that is stacked to the subtraction of
two sentence vectors. Note that some works use concatenation [166] or Man-
hattan distance [114] of sentence vectors instead of their subtraction [73],
which we find to be less effective on small amount of data.

We apply the configurations of the sentence encoders from the last ex-
periment to corresponding baselines, so as to show the performance under
controlled variables. Training of a classifier is terminated by early-stopping
based on the validation set. Following convention [65, 167], we report the
accuracy and F1 scores.

Results. This task is challenging due to the heterogeneity of cross-lingual

19Paraphrases have similar meanings, but can differ a lot in content details and have
inconsistent word orders. Hence, they are essentially different from simple translations of
sentences. We have found that even the well-recognized Google NMT frequently causes
distortions to short sentence meanings, and lead to the results that are close to random
guess from the baseline classifiers after translation.
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Languages ‘ En&Fr ‘ En&Es

Metrics ‘Acc. F1 ‘Acc. F1
BiBOW 54.93 0.622|56.27 0.623
BiCNN 54.33 0.625(53.80 0.611
ABCNN 56.73 0.644 | 58.83 0.655
BiGRU 60.81 0.697 [ 60.53 0.692
BiATT 61.47 0.699 | 61.27 0.689

BilDRL-GRU-MTL| 64.80 0.732|63.33 0.722
BilDRL-ATT-MTL | 65.27 0.735|66.07 0.735
BilDRL-ATT-joint {68.53 0.785(67.13 0.759

Table 5.4: Accuracy and F1-scores of bilingual paraphrase identification. For
BilDRL, the results by three model variants are reported: BilDRL-GRU-
MTL and BilDRL-ATT-MTL are models with bilingual multi-task learning,
and BilDRL-ATT-joint is the best ATT-based dictionary model variant de-
ployed with both multi-task and joint learning.

paraphrases and limitedness of learning resources. where BiATT consistently
outperforms the others, merely reaches slightly over 60% of accuracy on both
En-Fr and En-Es settings. We believe that it comes down to the fact that
sentences of different languages are often drastically heterogenous in both
lexical semantics and the sentence grammar that governs the composition
of lexicons. Hence, it is not surprising that previous neural sentence pair
models, which capture the semantic relation of bilingual sentences directly
from all participating lexicons, fall short at the multilingual task. BilDRL,
however, effectively leverages the correspondence of lexical and sentential
semantics to simplify the task to an easier entailment task in the lexicon
space, for which the multi-task learning BilDRL-ATT-MTL outperforms the
best baseline respectively by 3.80% and 4.80% of accuracy in both language
settings, while BilDRL-ATT-joint, employing the joint learning, further im-
proves the task by another satisfying 3.26% and 1.06% of accuracy. Both
also show notable increment in F1.

5.5 Conclusion

In this paper, we propose a neural embedding model BilDRL that captures
the correspondence of cross-lingual lexical and sentential semantics. We
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experiment with multiple forms of neural models and identify the best tech-
nique. The two learning strategies, bilingual multi-task learning and joint
learning, are effective at enhancing the cross-lingual learning with limited
resources, and also achieve promising performance on cross-lingual reverse
dictionary retrieval and bilingual paraphrase identification tasks by associ-
ating lexical and sentential semantics.

We identify several important directions of future works to explore given
the contribution presented and the limitation of scope assumed in this work.
One direction is to explore whether the lexicon-sentence alignment can im-
prove bilingual word embeddings. Bilingual embeddings[175, 152] and sen-
tence embeddings [114, 160] have been well-studied separately, Therefore the
observation of this work that putting them in the same space helps specific
tasks may lead to interesting investigation on whether it can make bilingual
embeddings themselves a better one. Another important direction concerns
applying BilDRL to bilingual question answering and semantic search sys-
tems. Again we observe that question answering and semantic search in the
multilingual setting are built either separately on all involved languages or
ad-/post-hocing a separate, general-purpose translation system. FEither of
them does not fully leverage the benefit of bilingual task-specific data, so we
expect this to be another place where our work may provide insight.
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6 Latent Translation: Crossing Modalities by
Bridging Generative Models %
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Figure 6.1: Latent translation with a shared autoencoder. Pretrained gener-
ative models provide embeddings (21, 23) for data in two different domains
(x1, x2), here shown as written digits and (spectrograms of) spoken digits.
A shared autoencoder creates joint embeddings (z’) which are encouraged
to overlap by a sliced-wasserstein distance and semantically structured by
a linear classifier. The autoencoder is trained with an additional one-hot
domain label (D), and domain transfer occurs by encoding with one domain
label and decoding with the other. More details are available in Section 6.3.

6.1 Introduction

Modularity enables general and efficient problem solving by recombining pre-
defined components in new ways. As such, modular design is essential to such
core pursuits as proving theorems, designing algorithms, and software engi-
neering. Despite the many advances of deep learning, including impressive
generative models such as Variational Autoencoders (VAEs) and Generative

20The content of this section is taken from:
[147] Yingtao Tian and Jesse Engel. Latent translation: Crossing modalities by bridging
generative models. In Submitted, 2019
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Figure 6.2: Synthetic problem demonstrating latent translation (best viewed
in color). Synthetic datasets are created to represent pretrained embeddings
for two data domains (red and green ellipses, 2-dimensional). A small ”bridg-
ing” autoencoder (as in Figure 6.1) is trained to reconstruct data from both
domains. The shared latent space (also 2-dimensional) has domain overlap
because of the SWD penalty, and class separation due to the linear classifier
(decision boundary shown). This enables bidirectional domain transfer that
preserves local structure (shown by the color gradient of datapoints) and
class separation (learning to rotate rather than shift and squash).

Adversarial Networks (GANs), end-to-end optimization inhibits modular de-
sign by providing no straight-forward way to combine predefined modules.
While performance benefits still exist for scaling individual models, such as
the recent BigGAN model [23], it becomes increasingly infeasible to retrain
such large architectures for every new use case. By analogy, this would be
equivalent to having to rewrite an assembly compiler every time one wanted
to write a new web application.

Transfer learning and fine-tuning are common methods to reuse individual
pretrained modules for new tasks [41, 101], but there is still no clear method
to get the combinatorial benefits of integrating multiple modules. Here, we
explore one such approach by bridging pretrained latent generative models
to perform cross-modal domain transfer.

For cross-modal domain transfer, we seek to train a model capable of
transferring instances from a source domain (z1) to a target domain (z5), such
that local variations in source domain are transferred to local variations in the
target domain. We refer to this property as locality. Thus, local interpolation
in the source domain would ideally be similar to local interpolation in target
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domain when transferred.

There are often many possible alignments of semantic attributes that
could maintain locality. For instance, absent additional context, there is no
reason that dataset images and spoken utterances of the digit “0” should
align with each other. There may also be no agreed common semantics, like
for example between images of landscapes and passages of music, and it is at
the liberty of the user to define such connections based on their own intent.
Our goal in modeling is to respect such intent and make sure that the correct
attributes are connected between the two domains.

We refer to this property as semantic alignment. A user can thus sort a
set of data points from in each domain into common bins, which we can use
to constrain the cross-domain alignment. We can quantitatively measure the
degree of semantic alignment by using a classifier to label transformed data
and measuring the percentage of data points that fall into the same bin for
the source and target domain. Our goal can thus be stated as learning trans-
formations that preserve locality and semantic alignment, while requiring as
few labels from a user as possible.

To achieve this goal and tackle prior limitations, we propose to abstract
the domains with independent latent variable models, and then learn to
transfer between the latent spaces of those models. Our main contributions
include:

e We propose a shared ”bridging” VAE to transfer between latent gen-
erative models. Locality and semantic alignment of transformations
are encouraged by applying a sliced-wasserstein distance (SWD), and
a classification loss respectively to the shared latent space.

e We demonstrate with qualitative and quantitative results that our pro-
posed method enables transfer within a modality (image-to-image),
between modalities (image-to-audio), and between generative model
types (VAE to GAN).

e We show that decoupling the cost of training from that of the base
generative models increases training speed by a factor of ~ 200x, even
for the relatively small base models examined in this work.
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6.2 Related Work

Latent Generative Models: Deep latent generative models use an ex-
pressive neural network function to convert a tractable latent distribution
p(z) into the approximation of a population distribution p*(z). Two pop-
ular variants include VAEs [79] and GANs [55]. GANs are trained with
an adversarial classifier while VAEs are trained to maximize a variational
approximation through the use of evidence lower bound (ELBO). These
classes of models have been thoroughly investigated in many applications
and variants [59, 94, 17| including conditional generation [110], generation
of one domain conditioned on another [36, 124], generation of high-quality
images [77], audio [47, 49], and music [128].

Domain Transfer: Deep generative models enable domain transfer by
learning a smooth mapping between data domains such that the variations
in one domain are reflected in the other. This has been demonstrated to
great effect within a single modality, for example transferring between two
different styles of image [69, 173, 96, 95], video [156], or music [113]. These
works have been the basis of interesting creative tools [4], as small changes
in the source domain are reflected by comparable intuitive changes in the
target domain.

Despite these successes, this line of work has several limitations. Super-
vised techniques such as Pix2Pix [69] and Vid2Vid [156], are able to transfer
between more distant datasets, but require very dense supervision from large
volumes of tightly paired data. While latent translation can benefit from ad-
ditional supervision, it does not require all data to be strongly paired data.
Unsupervised methods such as CycleGAN or its variants [173, 140] require
the two data domains to be closely related (e.g. horse-to-zebra, face-to-emoji,
MNIST-to-SVHN) [96]. This allows the model to focus on transferring local
properties like texture and coloring instead of high-level semantics. [33] show
that CycleGAN transformations share many similarities with adversarial ex-
amples, hiding information about the source domain in near-imperceptible
high-frequency variations of the target domain. Latent translation avoids
these issues by abstracting the data domains with pretrained models, allow-
ing them to be significantly different.

Perhaps closest to this work is the UNIT framework [99, 100], where
a shared latent space is learned jointly with both VAE and GAN losses.
In a similar spirit, they tie the weights of highest layers of the encoders
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and decoders to encourage learning a common latent space. While UNIT
is sufficient for image-to-image translation (dog-to-dog, digit-to-digit), this
work extends to more diverse data domains by allowing independence of the
base generative models and only learning a shared latent space to tie the
two together. Also, while joint training has performance benefits for a single
domain transfer task, the modularity of latent translation allows specifying
new model combinations without the potentially prohibitive cost of retraining
the base models for each new combination.

Transfer Learning: Transfer learning and fine-tuning aim to reuse a model
trained on a specific task for new tasks. For example, deep classification mod-
els trained on the ImageNet dataset [131] can transfer their learned features to
tasks such as object detection [125] and semantic segmentation [102]. Natural
language processing has also recently seen significant progress through trans-
fer learning of very large pretrained models [41]. However, easily combining
multiple models together in a modular way is still an unsolved problem. This
work explores a step in that direction for deep latent generative models.

Neural Machine Translation: Unsupervised neural machine translation
(NMT) techniques work by aligning embeddings in two different languages.
Many approaches use discriminators to make translated embeddings indistin-
guishable [169, 88], similar to applying CycleGAN in latent space. This work
takes that approach as a baseline and expands upon it by learning a shared
embedding space for each domain. Backtranslation and anchor words [89, 10]
are promising developments in NMT, and exploring their relevance to latent
translation of generative models is an interesting avenue for future work.

6.3 Method

Figure 6.1 diagrams our hierarchical approach to latent translation. We start
with a separate pretrained generative model, either VAE or GAN, for both
the source and target domain. These models give latent embeddings (z1,
2z9) of the data from both domains (z1, x5). For VAEs, data embeddings are
given by the encoder, z ~ ¢(z|z), where ¢ is an encoder network. Since GANs
lack an encoder, we choose latent samples from the prior, z ~ p(z), and then
use rejection sampling to keep only samples whose associated data, © = g(z),
where ¢ is a generator network, is classified with high confidence by an aux-
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Figure 6.3: Bridging autoencoder reconstructions. For each dataset, original
data is on the left and reconstructions are on the right. For SC09 we show
the log magnitude spectrogram of the audio, and label order is the same
as MNIST. The reconstruction quality is limited by the fidelity of the base
generative model. The bridging autoencoder is able to achieve sharp recon-
structions because the base models are either VAEs with § < 1 (MNIST,
Fashion MNIST) or a GAN (SC09). More discussions are available in Sec-
tion 6.5.1.

iliary attribute classifier. We then train a single ”bridging” VAE to create
a shared latent space (2’) that corresponds to both domains. The bridging
VAE shares weights between both latent domains to encourage the model to
seek common structure, but we also find it helpful to condition both the en-
coder gsparea(?'|2, D) and decoder gsparea(z|2’, D), with an additional one-hot
domain label, D, to allow the model some flexibility to adapt to variations
particular to each domain. While the base VAEs and GANs have spherical
Gaussian priors, we penalize the KL-Divergence term for VAEs to be less
than 1 (also known as a $-VAE [63]), allowing the models to achieve bet-
ter reconstructions and retain some structure of the original dataset for the
bridging VAE to model. Full architecture and training details are available
in the Supplementary Material.

The domain conditional bridging VAE objective consists of three loss
terms:

1. Evidence Lower Bound (ELBO). Standard VAE loss. For each
domain d € {1, 2},

L0 = —E.iogy logm(z2a;9(2', D = d)]
+ B Dk (q(2']za, D = d)||p(2"))
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where the likelihood 7(2; g) is a spherical Gaussian N (z; g, 0%I), and o
and Pki, are hyperparmeters set to 1 and 0.1 respectively to encourage
reconstruction accuracy.

2. Sliced Wasserstein Distance (SWD) [19]. The distribution dis-
tance between mini-batches of samples from each domain in the shared
latent space (21, z5),

L5WP — 1/|0)] Z W2 (proj(2},w), proj(#}, w))
weN

where (Q is a set of random unit vectors, proj(A, a) is the projection of
A on vector a, and WZ(A, B) is the quadratic Wasserstein distance.

3. Classification Loss (Cls). For each domain d € {1,2}, we enforce
semantic alignment with attribute labels y and a classification loss in
the shared latent space:

‘CdCIS = Ez’GZQH(f(z/% y)
where H is the cross entropy loss, f(2') is a linear classifier.

Including terms for both domains, it gives the total training loss,
L= (ﬁ]lilLBO + E]QELBO) + /BSWDESWD + 5(]15(*6?15 + ,CSIS)

where Bswp and [cs are scalar loss weights. The transfer procedure is illus-
trated Figure 6.2 using synthetic data. For reconstructions, data z; is passed
through two encoders, z; ~ q(z1|1), 2’ ~ Gsharea(2'|21, D = 1), and two de-
coders, Z1 ~ Gshared(21]2, D = 1), @1 ~ g(21|z1). For transformations, the
encoding is the same, but decoding uses decoders (and conditioning) from
the second domain, Z3 ~ gsparea(22|2’, D = 2), @5 ~ g(23|25). Further analysis
and intuition behind loss terms is given in Figure 6.2.

6.4 Experiments

6.4.1 Datasets

While the end goal of our method is to enable mapping between arbitrary
datasets, for quantitative evaluation we restrict ourselves to three domains
where there exist a somewhat natural alignment for comparison:
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Figure 6.4: Domain Transfer from an MNIST VAE to a separately trained
MNIST VAE, Fashion MNIST VAE, and SC09 GAN. For each dataset, the
left is the data from the source domain and on the right is transformations
to the target domain. Domain transfer maintains the label identity, and a
diversity of outputs, mapping local variations in the source domain to local
variations in the target domain. More discussions available in Section 6.5.2.

Transfer Accuracy ‘ FID
MNIST — MNIST — F-MNIST MNIST SC09 — | MNIST —
Model Type MNIST F-MNIST — MNIST — SC09 MNIST | F-MNIST
Pix2Pix - 0.77 0.08 X X 0.087
CycleGAN - 0.08 0.13 X X 0.361
Latent CycleGAN 0.08 0.10 0.10 0.09 0.11 0.081
This work 0.98 0.95 0.89 0.67 0.98 0.004

Table 6.1: Quantitative comparison of domain transfer accuracy and quality.
We compare to preexisting approaches, Pix2Pix [69] and CycleGAN [173]
trained on raw-pixels, and latent tranlsation via CycleGAN (Latent Cycle-
GAN). All baseline models are trained with pairs of class-aligned data. As
in Figure 6.4, MNIST — MNIST transfers between pretrained models with
different initial conditions. Pix2Pix and CycleGAN fail to train on MNIST
— SC09, as the two domains are too distinct. We compute class accuracies
and Fréchet Inception Distance (FID, lower value indicates a better image
quality), using pretrained classifiers on the target domain. Latent Cycle-
GAN accuracies are similar to chance because the cyclic reconstruction cost
dominates and encourages learning the identity function. More discussions
available in Section 6.5.2.

1. MINIST [90], which contains images of hand-written digits of 10 classes
from “0” to “9”.
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Figure 6.5: Qualitative comparison of domain transfer across models, as in
the last column of Table 6.1. Pix2Pix seems to have collapsed to a pro-
totype for each class and CycleGAN has collapsed to output mostly shirts
and jackets. Latent CycleGAN also has no class structure, as compared to
the bridging autoencoder that generates clear and diverse class-appropriate
transformations. More discussions available in Section 6.5.2.

2. Fashion MNIST [163], which contains fashion related objects such as
shoes, t-shirts, categorized into 10 classes. The structure of data and
the size of images are identical to MNIST.

3. SC09, a subset of the Speech Commands Dataset 2!, which contains
spoken digits from “0” to “’9”. This is a much noisier and more diffi-
cult dataset than the others, with 16,000 dimensions (1 second 16kHz)
instead of 768. Since WaveGAN lacks an encoder, the bridging VAE
dataset is composed of samples from the prior rather than encodings
of the data. We collect 1,300 prior samples per a label by rejecting
samples with a maximum softmax output < 0.95 on the pretrained
WaveGAN classifier for spoken digits.

For MNIST and Fashion MNIST, we pretrain VAEs with MLP encoders
and decoders following [48]. For SC09, we chose to use the publicly avail-
able WaveGAN [43]*2 because we wanted a global latent variable for the full
waveform (as opposed to a distributed latent code as in [49]) and VAEs fail
on this more difficult dataset. It also gives us the opportunity to explore

21Dataset available at https://ai.googleblog.com/2017/08/launching-speech-commands-
dataset.html
22Code and pretrained model available at https://github.com/chrisdonahue/wavegan
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Intraclass Interpolation
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Figure 6.6: Interpolation within a class using bridging autoencoders.
Columns of images in red squares are fixed points, with three rows of in-
terpolations. (1) Source: Interpolate in source domain between fixed data
points, (2) Target: Transfer fixed data points in source domain to target
domain and interpolate between transferred fixed points there, (3) Transfer:
Transfer all points in first row to the target domain. Note that Transfer
interpolation produces smooth variation of data attributes like Target inter-
polation, indicating that local variations in the source domain are mapped
to local variations in the target domain. More discussions are available in
Section 6.5.3.

transferring between different classes of models. For the bridging VAE, we
also use stacks of fully-connected linear layers with ReLLU activation and a
final “gated mixing layer”. Full network architecture details are available
in the Supplementary Material. We would like to emphasize that we only
use class level supervision for enforcing semantic alignment with the latent
classifier.

We examine three scenarios of domain transfer:

1. MNIST <« MNIST. We first train two lower-level VAEs from different
initial conditions. The bridging autoencoder is then tasked with trans-
ferring between latent spaces while maintaining the digit class from
source to target.

2. MNIST < Fashion MNIST. In this scenario, we specify a global one-
to-one mapping between 10 digit classes and 10 fashion object classes
(available in the Supplementary Material) The bridging autoencoder is

83



tasked with preserving this mapping as it transfers between images of
digits and clothing.

3. MNIST < SC09. For the speech dataset, we first train a GAN to gen-
erate audio waveforms [43] of spoken digits. The bridging autoencoder

is then tasked with transferring between a VAE of written digits and a
GAN of spoken digits.?3

6.4.2 Baselines

Where possible, we compare latent translation with a bridging VAE to three
existing approaches. As a straightforward baseline, we train Pix2Pix [69]
and CycleGAN [173] models to perform domain transfer directly in the data
space. In analogy to the NMT literature, we also provide a baseline of la-
tent translation with a CycleGAN in latent space (Latent CycleGAN). To
encourage semantic alignment in baselines, we provide additional supervision
by only training on class aligned pairs of data.

6.5 Results

6.5.1 Reconstruction

For bridging VAEs, qualitative reconstruction results are shown in Figure 6.3.
The quality is limited by the fidelity of the base generative model, which is
quite sharp for MNIST and Fashion MNIST (VAEs with 5 < 1). However,
despite being accurate and intelligible, the ”ground truth” of WaveGAN
samples for SC09 is quite noisy, as the model is not completely successful at
capturing this relatively difficult dataset. For all datasets the bridging VAE
produces reconstructions of comparable quality to the original data.

Quantitatively, we can calculate reconstruction accuracies as shown in
Table 6.2. With pretrained classifiers in each data domain, we measure the
percentage of reconstructions that do not change in their predicted class.
As expected from the qualitative results, the bridging VAE reconstruction
accuracies for MNIST and Fashion MNIST are similar to the base models,
indicating that it has learned the latent data manifold.

23Generated audio samples available in the supplemental material and at
https://drive.google.com/drive/folders/1mckeOlhLucWtlzRchdAleJxcaHS7R-lu
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The lower accuracy on SCO09 likely reflects the worse performance of the
base generative model on the difficult dataset, leading to greater variance
in the latent space. For example, only 31.8% samples from the GAN prior
give the classifier high enough confidence to be used for training the bridging
VAE. Despite this, the model still achieves relatively high reconstruction
accuracy.

Accuracy MNIST Fashion MNIST SC09

Base Model 0.995 0.952 -
Bridging VAE  0.989 0.903 0.739

Table 6.2: Reconstruction accuracy for base generative models and bridging
VAE. WaveGAN does not have an encoder, and thus does not have a base
reconstruction accuracy.

6.5.2 Domain Transfer

For bridging VAEs, qualitative transfer results are shown in Figure 6.4. For
each pair of datasets, domain transfer maintains the label identity, and a
diversity of outputs, at a similar quality to the reconstructions in Figure 6.3.

Quantitative results are given in Table 6.1. Given that the datasets have
pre-aligned classes, when evaluating transferring from data x4, to zg4,, the
reported accuracy is the portion of instances that x4, and x4, have the same
predicted class. We also compute Fréchet Inception Distance (FID) as a
measure of image quality using features form the same pretrained classi-
fiers [62]. The bridging VAE achieves very high transfer accuracies (bottom
row), which are comparable in each case to reconstruction accuracies in the
target domain. Interestingly, it follows that MNIST — SC09 has lower accu-
racy than SC09 — MNIST, reflecting the reduced quality of the WaveGAN
latent space.

In Table 6.1 we also quantitatively compare with the baseline models
where possible. We exclude Pix2Pix and CycleGAN from MNIST — MNIST
as it involves transfer between different initializations of the same model on
the same dataset and does not apply. Despite a large hyperparameter search,
Pix2Pix and CycleGAN fail to train on MNIST <« SC09, as the two domains
are too distinct. Qualitative results for MNIST — Fashion MNIST are shown
in Figure 6.5. Pix2Pix has higher accuracy than the other baselines because
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Interclass Interpolation

Figure 6.7: Interpolation between classes. The arrangement of images is
the same as Figure 6.6. Source and Target interpolation produce varied,
but sometimes unrealistic, outputs between class fixed points. The bridging
autoencoder is trained to stay close to the marginal posterior of the data
distribution. As a result Transfer interpolation varies smoothly within a
class but makes larger jumps at class boundaries to avoid unrealistic outputs.
More discussions are available in Section 6.5.3.

it seems to have collapsed to a prototype for each class, while CycleGAN
has collapsed to outputs mostly shirts and jackets. In contrast, the bridging
autoencoder generates diverse and class-appropriate transformations, with
higher image quality which is reflected in their lower FID scores.

Finally, we found that latent CycleGAN had transfer accuracies roughly
equal to chance. Unlike NMT, the base latent spaces have spherical Gaussian
priors that make the cyclic reconstruction loss easy to optimize, encouraging
generators to learn an identity function. Indeed, the samples in Figure 6.5
resemble samples from the Gaussian prior, which are randomly distributed
in class. This motivates the need for new techniques for latent translation
such as the bridging VAE in this work.

6.5.3 Interpolation

Interpolation can act as a good proxy for locality, as good interpolation re-
quires small changes in the source domain to cause small changes in the
target domain. We show intraclass and interclass interpolation in Figure 6.6
and Figure 6.7 respectively. We use spherical interpolation [68], as we are
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interpolating in a Gaussian latent space. The figures compare three types
of interpolation: (1) the interpolation in the source domain’s latent space,
which acts a baseline for smoothness of interpolation for a pretrained gener-
ative model, (2) transfer fixed points to the target domain’s latent space and
interpolate in that space, and (3) transfer all points of the source interpola-
tion to the target domain’s latent space, which shows how the transferring
warps the latent space.

Note for intraclass interpolation, the second and third rows have com-
parably smooth trajectories, reflecting that locality has been preserved. For
interclass interpolation in Figure 6.7 interpolation is smooth within a class,
but between classes the second row blurs pixels to create blurry combina-
tions of digits, while the full transformation in the third row makes sudden
transitions between classes. This is expected from our training procedure
as the bridging autoencoder is modeling the marginal posterior of each la-
tent space, and thus always stays on the manifold of the actual data during
interpolation.

6.5.4 Efficiency and Ablation Analysis

Since our method is a semi-supervised method, we want to know how effec-
tively our method leverages the labeled data. In Table 6.3 we show for the
MNIST — MNIST setting the performance measured by transfer accuracy
with respect to the number of labeled data points. Labels are distributed
evenly among classes. The accuracy of transformations grows monotonically
with the number of labels and reaches over 50% with as few as 10 labels per a
class. Without labels, we also observe accuracies greater than chance due to
unsupervised alignment introduced by the SWD penalty in the shared latent
space.

Labels / Class 0 1 10 100 1000 6000
Accuracy 0.1390 0.339 0.524 0.6810 0.898 0.980

Table 6.3: MNIST — MNIST transfer accuracy with labeled data.

Besides data efficiency, pretraining the base generative models has com-
putational advantages. For large generative models that take weeks to train,
it would be infeasible to retrain the entire model for each new cross-domain
mapping. The bridging autoencoder avoids this cost by only retraining the
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latent transfer mappings. As an example from these experiments, training
the bridging autoencoder for MNIST <« SCO09 takes about half an hour on a
single GPU, while retraining the SC09 WaveGAN takes around four days.

Finally, we perform an ablation study to confirm the benefits of each
architecture component to transfer accuracy. For consistency, we stick to
the MNIST — MNIST setting with fully labeled data. In Table 6.4, we see
that the largest contribution to performance is from the domain conditioning
signal, allowing the model to adapt to the specific structure of each domain.
Further, the increased overlap in the shared latent space induced by the SWD
penalty is reflected in the greater transfer accuracies.

Method Unconditional C(?(Zir‘ril)nal C(]))(zir'r‘?(l)nal
Ablation VAE neition o

VAE VAE + SWD
Accuracy 0.149 0.849 0.980

Table 6.4: Ablation study of MNIST — MNIST transfer accuracies.

6.6 Conclusion

We have demonstrated an approach to learn mappings between disparate do-
mains by bridging the latent codes of each domain with a shared autoencoder.
We find bridging VAEs are able to achieve high transfer accuracies, smoothly
map interpolations between domains, and even connect different model types
(VAEs and GANs). Here, we have restricted ourselves to datasets with
intuitive class-level mappings for the purpose of quantitative comparisons,
however there are many interesting creative possibilities to apply these tech-
niques between domains without a clear semantic alignment. Finally, as a
step towards modular design, we combine two pretrained models to solve a
new task for significantly less computational resources than retraining the
models from scratch.

We expect that several future research directions exist following up this
work. One direction is applying this method to real-world interactive art
creativity where users can benefit from operating in one domain and get the
creativity express in another hard or tedious to tune domain. This direction
could be important since the art design presents a significant barrier to new-
comers, and lowering the barrier by allowing creation in a more accessible

88



domain to be reflected in another hard domain allows more involving of peo-
ple in the creative process. Another essential direction concerns combining
this work with structured data while maintaining meaningful structures in
downstream domains. This work still focuses on continuous domains such
as images and audio, which are easier to model with relatively good quality.
However, how to deal with the cross-domain transfer while handling the com-
plexity of structured data remains an exciting and open question for further
study.
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Chapter Appendix

6.A Training Target Design

(a) Training (b) Domain Transfer

KL + Classifier KL + Classifier
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Figure 6.8: Architecture and training. Our method aims at transfer from
one domain to another domain such that the correct semantics (e.g., label) is
maintained across domains and local changes in the source domain should be
reflected in the target domain. To achieve this, we train a model to transfer
between the latent spaces of pre-trained generative models on source and
target domains. (a) The training is done with three types of loss functions:
(1) The VAE ELBO losses to encourage modeling of z; and 2z, which are
denoted as L2 and KL in the figure. (2) The Sliced Wasserstein Distance loss
to encourage cross-domain overlapping in the shared latent space, which is
denoted as SWD. (3) The classification loss to encourage intraclass overlap
in the shared latent space, which is denoted as Classifier. The training is
semi-supervised, since (1) and (2) requires no supervision (classes) while
only (3) needs such information. (b) To transfer data from one domain z;
(an image of digit “0”) to another domain z, (an audio of human saying
“zero”, shown in form of spectrum in the example), we first encode x; to
z1 ~ q(z1|x1), which we then further encode to a shared latent vector 2’
using our conditional encoder, 2’ ~ ¢(z'|z1, D = 1), where D donates the
operating domain. We then decode to the latent space of the target domain
29 = ¢(z|2/, D = 2) using our conditional decoder, which finally is used to
generate the transferred audio x5 = g(x2|22).
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We want to archive following three goals for the proposed VAE for latent
spaces:

1. Tt should be able to model the latent space of both domains, including
modeling local changes as well.

2. It should encode two latent spaces in a way to enable domain transfer-
ability. This means encoded z; and 25 in the shared latent space should
occupy overlapped spaces.

3. The transfer should be kept in the same class. That means, regardless
of domain, zs for the same class should occupy overlapped spaces.

With these goals in mind, we propose to use an optimization target compos-
ing of three kinds of losses. In the following text for notational convenience,
we denote approximated posterior Z; 2 (2|24, D = d), zq ~ q(24|24q), 24 ~
p(zq) for d € {1,2}, the process of sampling 2/, from domain d.

For reference, In Figure 6.9 we show the intuition to design and the con-
tribution to performance from each loss terms. Also, the complete diagram
of traing target is detailed in Figure 6.8.

1. Modeling two latent spaces with local changes. VAEs are often
used to model data with local changes in mind, usually demonstrated with
smooth interpolation, and we believe this property also applies when model-
ing the latent space of data. Consider for each domain d € {1,2}, the VAE
is fit to data to maximize the ELBO (Evidence Lower Bound)

L0 = —E.iogy logm(2a;9(2', D = d)]
+ Biu Dk (q(2']za, D = d)||p(2"))

where both ¢ and ¢ are fit to maximize LF*B9. Notably, the latent space
zs are continuous, so we choose the likelihood 7(z;g) to be the product of
N (z; g,0%I), where we set o to be a constant that effectively sets log w(2; g) =
||z — g|2, which is the L2 loss in Figure 6.8 (a). Also, Dk, is denoted as KL
loss in Figure 6.8 (a).
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2. Cross-domain overlapping in shared latent space. Formally, we
propose to measure the cross-domain overlapping through the distance be-
tween following two distributions as a proxy: the distribution of 2’ from
source domain (e.g., z; ~ Z;) and that from the target domain (e.g., 2z, ~ Z7).
We use Wasserstein Distance [7] to measure the distance of two sets of sam-
ples (this notion straightforwardly applies to the mini-batch setting) S} and

5, where S} is sampled from the source domain 2] ~ Z] and S from the
target domain 2z ~ Z). For computational efficiency and inspired by [40],
we use SWD, or Sliced Wasserstein Distance [19] between S| and S} as a loss
term to encourage cross-domain overlapping in shared latent space. This
means in practice we introduce the loss term

1 . ! : !/
£SWD = @ ZW; (prOJ(Slaw)7prOJ(52’w))

weN

where  is a set of random unit vectors, proj(A, a) is the projection of A on
vector a, and WZ(A, B) is the quadratic Wasserstein distance, which in the
one-dimensional case can be easily solved by monotonically pairing points in
A and B, as proven in [40].

3. Intra-class overlapping in shared latent space. We want that
regardless of domain, zs for the same class should occupy overlapped spaces,
so that instance of a particular class should retain its label through the
transferring. We therefore introduce the following loss term for both domain
de{l1,2}
EdCls = EZ’EZ&H(f(Z/)v l:v’)

where H is the cross entropy loss, f(z') is a one-layer linear classifier, and
I, is the one-hot representation of label of 2/ where 2’ is the data associated
with z’. We intentionally make classifier f as simple as possible in order to
encourage more capacity in the VAE instead of the classifier. Notably, unlike
previous two categories of losses that are unsupervised, this loss requires
labels and is thus supervised.

6.B Model Architecture

6.B.1 Bridging VAE

The model architecture of our proposed Bridging VAE is illustrated in Fig-
ure 6.10. The model relies on Gated Mixing Layers, or GML. We find
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Figure 6.9: Synthetic data to demonstrate the transfer between 2-D latent
spaces with 2-D shared latent space. Better viewed with color and mag-
nifier. Columns (a) - (e) are synthetic data in latent space, reconstructed
latent space points using VAE, domain 1 transferred to domain 2, domain
2 transferred to domain 1, shared latent space, respectively, follow the same
arrangement as Figure 6.2. Each row represent a combination of our proposed
components as follows: (1) Regular, unconditional VAE. Here transfer fails
and the shared latent space are divided into region for two domains. (2)
Conditional VAE. Here exists an overlapped shared latent space. However
the shared latent space are not mixed well. (3) Conditional VAE + SWD.
Here the shared latent space are well mixed, preserving the local changes
across domain transfer. (4) Conditional + SWD + Classification. This is
the best scenario that enables both domain transfer and class preservation as
well as local changes. An overall observation is that each proposed compo-
nent contributes positively to the performance in this synthetic data, which
serves as a motivation for our decision to include all of them.

empirically that GML improves performance by a large margin than lin-
ear layers, for which we hypothesize that this is because both the latent
space (z1, z2) and the shared latent space z’ are Gaussian space, GML helps
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optimization by starting with a good initialization. We also explore other
popular network components such as residual network and batch normaliza-
tion, but find that they are not providing performance improvements. Also,
the condition is fed to encoder and decoder as a 2-length one hot vector
indicating one of two domains.

For all settings, we use the dimension of latent space 100, Sswp = 1.0
and Bcors = 0.05, Specifically, for MNIST <+ MNIST and MNIST < Fashion
MNIST, we use the dimension of shared latent space 8, 4 layers of FC (fully
Connected Layers) of size 512 with ReL.U activation, Sk, = 0.05, fswp = 1.0
and Bcrs = 0.05; while for MNIST < SC09, we use the dimension of shared
latent space 16, 8 layers of FC (fully Connected Layers) of size 1024 with
ReLUa ctivation, ki, = 0.01, Bswp = 3.0 and Bars = 0.3. The difference
is due to that GAN does not provide posterior, so the latent space points
estimated by the classifier is much harder to model.

For optimization, we use Adam optimizer|[78] with learning rate 0.001,
beta; = 0.9 and beta; = 0.999. We train 50000 batches with batch size 128.
We do not employ any other tricks for VAE training.

6.B.2 Base Models and Classifiers

Base Model for MNIST and Fashion-MNIST The base model for
data space = (in our case MNIST and Fashion-MNIST) is a standard VAE
with latent space z, consisting of an encoder function ¢(z|z) that serves as
an approximation to the posterior p(z|x), a decoder function g(z) and a
likelihood 7 (z; g(z)) that is defined as p(z|z). Since we normalize MNIST
and Fashion MNIST’s pixel values such that they become continuous values
in range [0, 1], The likelihood 7 (z; g) is accordingly Gaussian N (z; g, 0,1).
Both ¢ and g are optimized to the Evidence Lower Bound (ELBO):

LEFO = —E,x [log m(w; 9(2)] + Dk (g(2]2) Ip(2))

where p(z) is a tractable simple prior which is N (0; 1) We parameterize
both encoder and decoder with neural networks. Specifically, the encoder
consists of 3 layers of FC (Fully Connected Layers) of size 1024 with ReL.U
activation, on top of which are an affine transformation for z, and an FC
with sigmoid activation for z, (both of size of latent space, which is 100),
which give q(z|z) £ N (z,; 2,). the decoder g consists of 3 layers of FC (Fully
Connected Layers) of size 1024 with ReLU activation, on top of which is an
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affine transformation of size equaling number of pixels in data (784 = 28 x 28,
the size of MNIST and Fashion MNIST images).

For training details, we use § = 1.0 and z, = 0.1 for a better quality in
reconstruction. we use Adam optimizer|[78] with learning rate 0.001, beta; =
0.9 and betas = 0.999 for optimization, and we train 100 epochs with batch
size H12.

Base Classifier for MNIST and Fashion-MNIST The base classifier
is consisting of 4 layers of FC followed by a affine transformation of size
equaling to the number of labels (10). We use Adam optimizer|[78] with
learning rate 0.001, beta; = 0.9 and betas = 0.999, and train for 100 epochs
with batch size 256. We use the best classifier selected from dumps at end
of each epoch, based on the performance on the hold-out set.

Base Model and Classifier for SC09 For SC09, we use the publicly
available WaveGAN [43]?* that contains pretrained GAN model for genera-
tion and classifier for classification.

6.C Other Approach

An possible alternative approach exists that applies CycleGAN in the latent
space. CycleGAN consists of two heterogeneous types of loss, the GAN and
reconstruction loss, combined using a factor S that must be tuned. We found
that adapting CycleGAN to the latent space rather than data space leads to
quite different training dynamics and therefore thoroughly tuned . Despite
our effort, we notices that it leads to bad performance: transfer accuracy
is 0.096 for MNIST — Fashion MNIST and 0.099 for Fashion MNIST —
MNIST. We show qualitative results from applying CycleGAN in latent space
in Figure 6.11.

6.D Supplementary Figures

We show the MNIST Digits to Fashion MNIST class Mapping we used in the
MNIST < Fashion MNIST setting detailed in the experiments in Figure 6.5.

24https://github.com /chrisdonahue /wavegan
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(a) Gated Mixing Layer (b) Conditional VAE
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Figure 6.10: Model Architecture for our Conditional VAE. (a) Gated Mixing
Layer, or GML, as an important building component. (b) Our conditional
VAE with GML.
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Figure 6.11: Qualitative results from applying CycleGAN [173] in latent
space. Visually, this approach suffer from less desirable overall visual quality,
and most notably, failure to respect label-level supervision, compared to our
proposed approach.
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MNIST Digits Fashion MNIST Class

T-shirt /top
Trouser
Pullover
Dress

Coat
Sandal
Shirt
Sneaker
Bag

Ankle boot

© 00 1O Ul Wi+~ O

Table 6.5: MNIST Digits to Fashion MNIST class Map-
ping, made according to Labels information available at
https://github.com/zalandoresearch /fashion-mnist
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7 Conclusion

The contributions of this thesis are organized following the conception of
representation learning for different modalities of data under different cir-
cumstances in Chapter 1. In detail, the individual contributions, summarized
as a list of different modularities and the proposed methods to apply repre-
sentation learning on them, are:

e In Chapter 2, a generative model for structured data that captures the
representations for discrete structures with formal grammars and se-
mantics and generate both syntactically and semantically correct data.

e In Chapter 3, a fast and effective label inference for social relations in
collaboration networks which can be formalized as a multi-label classi-
fication problem on graph edges.

e In Chapter 4, generating high-quality facial images of anime characters
using generative adversarial network that are highly welcome by the
community through the availability of a web interface that runs on
edge devices.

e In Chapter 5, modeling bilingual dictionaries, or cross-lingual cor-
respondence between sentences and lexicons, to benefit cross-lingual
applications such as cross-lingual semantic search and question answer-
ing.

e In Chapter 6, a novel approach to bridge modularities by learning a
post-hoc interface between two existing models to solve a new task and
facilitate transferring across different modalities (e.g., image-to-audio)
and even different types of generative models.

The approaches covered in this these deal with data of different modali-
ties. Despite the differences in modalities, the approaches still could provide
a unified underlying way to deal with the data through operating in the
latent, continuous space.

To summarize, all there approaches share a common property of enjoying
benefits from the fact that representation learning serves two purposes: one
the one hand, latent representation, as a posterior, serves as features proven
to be useful for downstream tasks as inputs, moreover, one the other hand,
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the latent space itself, as a prior, maintains a meaningful local structure
which enables applications that require controlling the generation of data
through manipulating the latent representation. For example, predicting the
properties of data instances using latent representations as features works for
graphs (Chapter 2), social networks (Chapter 3) sentences (Chapter 5), while
control the generation of data through manipulating the latent representation
works for images (Chapter 4) or even multiple modalities that are handled
simultaneously (Chapter 6).

It is worth looking into how the two purposes, predictivity as features
and manipulation through latent structures, are served through representa-
tion. First, usefully features are not bound to have suitable structures, which
has been demonstrated by the performance of features learning algorithms
without localities such as Random Projection [16] and Hashing [158], and
adapting algorithm with a well-formed theoretical structure such as Mani-
fold Learning [155, 97] to archive state-of-the-art empirical result remains an
open research direction. Still, in the case of representation learning, both
purposed are served simultaneously without fighting with each other, which
suggests that at least the representation learning can optimize the serving
of two purposes in a non-exclusive fashion. Furthermore, we observe that
some applications, such as unsupervised machine translation [87, 10] and
post-hocing generative models [48], benefit from having both good predictiv-
ities as features and latent structures. We, therefore, envision that these two
purposes could, as one step forward, helping each other under the framing of
representation learning.

7.1 Future Works

The contributions I present in this thesis show a line of approaches tackling
the challenge on how to model data from different modality and how to model
them in a unified way for downstream tasks to leverage. Besides detailed
discussion and future work section in each Chapter, I also describe here, in a
nutshell, some concrete future works for which this line of approaches opens
a new door of research:

e The generative model for structured data in Chapter 2 tackles the
challenge of addressing both syntax and semantic constraints in the
generative model for structured data. This model is shown to empir-
ically provide consistent and significant improvements over previous
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models without adding observable extra computation cost. The future
work includes exploring the refinement of formalization on a more the-
oretical ground, and investigating the application of such formalization
on a more diverse set of data modality, including computer programs
and other molecule datasets.

The inferring social relations in collaboration networks in Chapter 3
is formulated as a semi-supervised learning problem on graphs where
edges have multiple labels. This simple approach is consistency better
and thousands of times faster than previous methods on one series of
social relation dataset. The future work calls for exploring principled
indicator that characterizes a class of datasets that can benefit from
this simple approach, as well as theoretical analysis of the advantages
brought by our approaches.

The anime face generation with high quality in Chapter 4 opens the
door to community-driven creation powered by a deep generative method.
This method shows a certain degree of customization can be feasibly
materialized for one user to create artwork according to his/her lik-
ing. Future works include the finer control-ability of and interactivity
between the users.

The neural embedding model that captures the correspondence of cross-
lingual lexical and sentential semantics in Chapter 5 are effective at
enhancing the cross-lingual learning with limited resources and achieves
promising performance on cross-lingual tasks. An important direction
of future work is to explore whether the lexicon-sentence alignment
can improve bilingual word embeddings. Applying BilDRL to bilingual
question answering and semantic search systems is another important
direction.

The approach to learning mappings between disparate domains by
bridging the latent codes of each domain with a shared autoencoder
in Chapter 6 can achieve high transfer accuracies, smoothly map in-
terpolations between domains, and even connect different model types
(VAEs and GANs). Future works include applying this method to real-
world interactive art creativity where users can benefit from operating
in one domain and get the creativity express in another hard or tedious
to tune domain.
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